Skip to main content

Advertisement

Log in

An illustration of the potential for mapping MRI/MRS parameters with genetic over-expression profiles in human prostate cancer

  • Research Article
  • Published:
Magnetic Resonance Materials in Physics, Biology and Medicine Aims and scope Submit manuscript

Abstract

Introduction

Magnetic resonance imaging (MRI) and MR spectroscopy can probe a variety of physiological (e.g. blood vessel permeability) and metabolic characteristics of prostate cancer. However, little is known about the changes in gene expression that underlie the spectral and imaging features observed in prostate cancer. Tumor induced changes in vascular permeability and angiogenesis are thought to contribute to patterns of dynamic contrast enhanced (DCE) MRI images of prostate cancer even though the genetic basis of tumor vasculogenesis is complex and the specific mechanisms underlying these DCEMRI features have not yet been determined.

Materials and Methods

In order to identify the changes in gene expression that correspond to MRS and DCEMRI patterns in human prostate cancers, we have utilized tissue print micropeel techniques to generate “whole mount” molecular maps of radical prostatectomy specimens that correspond to pre-surgical MRI/MRS studies. These molecular maps include RNA expression profiles from both Affymetrix GeneChip microarrays and quantitative reverse transcriptase PCR (qrt-PCR) analysis, as well as immunohistochemical studies.

Results

Using these methods on patients with prostate cancer, we found robust over-expression of choline kinase a in the majority of primary tumors. We also observed overexpression of neuropeptide Y (NPY), a newly identified angiogenic factor, in a subset of prostate cancers, visualized on DCEMRI.

Conclusion

These studies set the stage for establishing MRI/MRS parameters as validated biomarkers for human prostate cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Jemal A, Murray T, Ward E, Samuels A, Tiwari RC, Ghafoor A, Feuer EJ, Thun MJ (2005) Cancer statistics, 2005. CA Cancer J Clin 55: 10–30

    Article  PubMed  Google Scholar 

  2. Andriole G, Djavan B, Fleshner N, Schroder F (2006) The case for prostate cancer screening with prostate-specific antigen. Eur Urol Suppl 5: 737–745

    Article  Google Scholar 

  3. Catalona WJ, Smith DS, Ratliff TL, Basler JW (1993) Detection of organ-confined prostate-cancer is increased through prostate-specific antigen-based screening. Jama-J Am Med Assoc 270: 948–954

    Article  CAS  Google Scholar 

  4. Efstathiou JA, Chen MH, Catalona WJ, McLeod DG, Carroll PR, Moul JW, Roehl KA, D’Amico AV (2006) Prostate-specific antigen-based serial screening may decrease prostate cancer-specific mortality. Urology 68: 342–347

    Article  PubMed  Google Scholar 

  5. Han M, Partin AW, Piantadosi S, Epstein JI, Walsh PC (2001) Era specific biochemical recurrence-free survival following radical prostatectomy for clinically localized prostate cancer. J Urol 166: 416–419

    Article  PubMed  CAS  Google Scholar 

  6. van der Cruijsen-Koeter IW, van der Kwast TH, Schroder FH (2003) Interval carcinomas in the European randomized study of screening for prostate cancer (ERSPC)-Rotterdam. J Natl Cancer Inst 95: 1462–1466

    PubMed  Google Scholar 

  7. Partin AW, Kattan MW, Subong ENP, Walsh PC, Wojno KJ, Oesterling JE, Scardino PT, Pearson JD (1997) Combination of prostate-specific antigen, clinical stage, and gleason score to predict pathological stage of localized prostate cancer—a multi-institutional update. Jama-J Am Med Assoc 277: 1445–1451

    Article  CAS  Google Scholar 

  8. Partin AW, Mangold LA, Lamm DM, Walsh PC, Epstein JI, Pearson JD (2001) Contemporary update of prostate cancer staging nomograms (Partin Tables) for the new millennium. Urology 58: 843–848

    Article  PubMed  CAS  Google Scholar 

  9. Huzjan R, Sala E, Hricak H (2005) Magnetic resonance imaging and magnetic resonance spectroscopic imaging of prostate cancer. Nat Clin Pract Urol 2: 434–442

    Article  PubMed  CAS  Google Scholar 

  10. Alonzi R, Padhani AR, Allen C (2007) Dynamic contrast enhanced MRI in prostate cancer. Eur J Radiol 63: 335–350

    Article  PubMed  Google Scholar 

  11. Padhani AR, Harvey CJ, Cosgrove DO (2005) Angiogenesis imaging in the management of prostate cancer. Nat Clin Pract Urol 2: 596–607

    Article  PubMed  Google Scholar 

  12. Casciani E, Gualdi GF (2006) Prostate cancer: value of magnetic resonance spectroscopy 3D chemical shift imaging. Abdom Imaging

  13. Dadiani M, Furman-Haran E, Degani H (2006) The application of NMR in tumor angiogenesis research. Prog Nuclear Magn Reson Spectrosc 49: 27–44

    Article  CAS  Google Scholar 

  14. Hylton N (2006) Dynamic contrast-enhanced magnetic resonance imaging as an imaging biomarker. J Clin Oncol 24: 3293–3298

    Article  PubMed  CAS  Google Scholar 

  15. Rehman S, Jayson GC (2005) Molecular imaging of antiangiogenic agents. Oncologist 10: 92–103

    Article  PubMed  CAS  Google Scholar 

  16. Oehr P (2006) ‘Omics’-based imaging in cancer detection and therapy. Personal Med 3: 19–32

    Article  CAS  Google Scholar 

  17. Negendank W (1992) Studies of human tumors by MRS: a review. NMR Biomed 5: 303–324

    PubMed  CAS  Google Scholar 

  18. Segal E, Sirlin CB, Ooi C, Adler AS, Gollub J, Chen X, Chan BK, Matcuk GR, Barry CT, Chang HY, Kuo MD (2007) Decoding global gene expression programs in liver cancer by noninvasive imaging. Nat Biotechnol 25: 675–680

    Article  PubMed  CAS  Google Scholar 

  19. Gaston SM, Soares MA, Siddiqui MM, Vu D, Lee JM, Goldner DL, Brice MJ, Shih JC, Upton MP, Perides G, Baptista J, Lavin PT, Bloch BN, Genega EM, Rubin MA, Lenkinski RE (2005) Tissue-print and print-phoresis as platform technologies for the molecular analysis of human surgical specimens: mapping tumor invasion of the prostate capsule. Nat Med 11: 95–101

    Article  PubMed  CAS  Google Scholar 

  20. Rosen Y, Bloch BN, Lenkinski RE, Greenman RL, Marquis RP, Rofsky NM (2007) 3T MR of the prostate: reducing susceptibility gradients by inflating the endorectal coil with a barium sulfate suspension. Magn Reson Med 57: 898–904

    Article  PubMed  CAS  Google Scholar 

  21. Bloch BN, Rofsky NM, Baroni RH, Marquis RP, Pedrosa I, Lenkinski RE (2004) 3 Tesla magnetic resonance imaging of the prostate with combined pelvic phased-array and endorectal coils; Initial experience (1). Acad Radiol 11: 863–867

    PubMed  Google Scholar 

  22. Cunningham CH, Vigneron DB, Marjanska M, Chen AP, Xu D, Hurd RE, Kurhanewicz J, Garwood M, Pauly JM (2005) Sequence design for magnetic resonance spectroscopic imaging of prostate cancer at 3 T. Magn Reson Med 53: 1033–1039

    Article  PubMed  Google Scholar 

  23. Degani H, Gusis V, Weinstein D, Fields S, Strano S (1997) Mapping pathophysiological features of breast tumors by MRI at high spatial resolution. Nat Med 3: 780–782

    Article  PubMed  CAS  Google Scholar 

  24. Bloch BN, Furman-Haran E, Helbich TH, Lenkinski RE, Degani H, Kratzik C, Susani M, Haitel A, Jaromi S, Ngo L, Rofsky NM (2007) Prostate cancer: accurate determination of extracapsular extension with high-spatial-resolution dynamic contrast-enhanced and T2-weighted MR imaging—initial results. Radiology 245: 176–185

    Article  PubMed  Google Scholar 

  25. Furman-Haran E, Degani H (2002) Parametric analysis of breast MRI. J Comput Assist Tomogr 26: 376–386

    Article  PubMed  Google Scholar 

  26. Schroeder A, Mueller O, Stocker S, Salowsky R, Leiber M, Gassmann M, Lightfoot S, Menzel W, Granzow M, Ragg T (2006) The RIN: an RNA integrity number for assigning integrity values to RNA measurements. BMC Mol Biol 7: 3

    Article  PubMed  CAS  Google Scholar 

  27. Rubin MA, Zerkowski MP, Camp RL, Kuefer R, Hofer MD, Chinnaiyan AM, Rimm DL (2004) Quantitative determination of expression of the prostate cancer protein alpha-methylacyl-CoA racemase using automated quantitative analysis (AQUA): a novel paradigm for automated and continuous biomarker measurements. Am J Pathol 164: 831–840

    PubMed  CAS  Google Scholar 

  28. Grizzi F, Russo C, Colombo P, Franceschini B, Frezza EE, Cobos E, Chiriva-Internati M (2005) Quantitative evaluation and modeling of two-dimensional neovascular network complexity: the surface fractal dimension. BMC Cancer 5: 14

    Article  PubMed  Google Scholar 

  29. Rajesh A, Coakley FV, Kurhanewicz J (2007) 3D MR spectroscopic imaging in the evaluation of prostate cancer. Clin Radiol 62: 921–929

    Article  PubMed  CAS  Google Scholar 

  30. Coakley FV, Qayyum A, Kurhanewicz J (2003) Magnetic resonance imaging and spectroscopic imaging of prostate cancer. J Urol 170: S69–S75; discussion S75–S76

  31. Zakian KL, Sircar K, Hricak H, Chen HN, Shukla-Dave A, Eberhardt S, Muruganandham M, Ebora L, Kattan MW, Reuter VE, Scardino PT, Koutcher JA (2005) Correlation of proton MR spectroscopic imaging with gleason score based on step-section pathologic analysis after radical prostatectomy. Radiology 234: 804–814

    Article  PubMed  Google Scholar 

  32. Haga T (1971) Synthesis and release of (14 C) acetylcholine in synaptosomes. J Neurochem 18: 781–798

    Article  PubMed  CAS  Google Scholar 

  33. Katz-Brull R, Degani H (1996) Kinetics of choline transport and phosphorylation in human breast cancer cells; NMR application of the zero trans method. Anticancer Res 16: 1375–1380

    PubMed  CAS  Google Scholar 

  34. Eliyahu G, Kreizman T, Degani H (2007) Phosphocholine as a biomarker of breast cancer: Molecular and biochemical studies. Int J Cancer

  35. de Molina AR, Rodriguez-Gonzalez A, Gutierrez R, Martinez- Pineiro L, Sanchez JJ, Bonilla F, Rosell R, Lacal JC (2002) Overexpression of choline kinase is a frequent feature in human tumor-derived cell lines and in lung, prostate, and colorectal human cancers. Biochem Biophys Res Commun 296: 580–583

    Article  CAS  Google Scholar 

  36. Glunde K, Jacobs MA, Bhujwalla ZM (2006) Choline metabolism in cancer: implications for diagnosis and therapy. Expert Rev Mol Diagnos 6: 821–829

    Article  CAS  Google Scholar 

  37. Kwee SA, Coel MN, Lim J, Ko JHP (2005) Prostate cancer localization with (18) fluorine fluorocholine positron emission tomography. J Urol 173: 252–255

    PubMed  Google Scholar 

  38. Kwee SA, Wei H, Sesterhenn I, Yun D, Coel MN (2006) Localization of primary prostate cancer with dual-phase F-18-fluorocholine PET. J Nuclear Med 47: 262–269

    Google Scholar 

  39. Reske SN, Blumstein NM, Neumaier B, Gottfried HW, Finsterbusch F, Kocot D, Moller P, Glatting G, Perner S (2006) Imaging prostate cancer with C-11-choline PET/CT. J Nuclear Med 47: 1249–1254

    CAS  Google Scholar 

  40. Folkman J (2006) Angiogenesis. Annu Rev Med 57: 1–18

    Article  PubMed  CAS  Google Scholar 

  41. Dome B, Hendrix MJ, Paku S, Tovari J, Timar J (2007) Alternative vascularization mechanisms in cancer: pathology and therapeutic implications. Am J Pathol 170: 1–15

    Article  PubMed  CAS  Google Scholar 

  42. Chaib H, Cockrell EK, Rubin MA, Macoska JA (2001) Profiling and verification of gene expression patterns in normal and malignant human prostate tissues by cDNA microarray analysis. Neoplasia 3: 43–52

    Article  PubMed  CAS  Google Scholar 

  43. El-Gohary YM, Silverman JF, Olson PR, Liu YL, Cohen JK, Miller R, Saad RS (2007) Endoglin (CD105) and vascular endothelial growth factor as prognostic markers in prostatic adenocarcinoma. Am J Clin Pathol 127: 572–579

    Article  PubMed  CAS  Google Scholar 

  44. Soulitzis N, Karyotis I, Delakas D, Spandidos DA (2006) Expression analysis of peptide growth factors VEGF, FGF2, TGFB1, EGF and IGF1 in prostate cancer and benign prostatic hyperplasia. Int J Oncol 29: 305–314

    PubMed  CAS  Google Scholar 

  45. Walsh K, Sriprasad S, Hopster D, Codd J, Mulvin D (2002) Distribution of vascular endothelial growth factor (VEGF) in prostate disease. Prostate Cancer Prostat Dis 5: 119–22

    Article  CAS  Google Scholar 

  46. Rasiah KK, Kench JG, Gardiner-Garden M, Biankin AV, Golovsky D, Brenner PC, Kooner R, O’Neill G F, Turner JJ, Delprado W, Lee CS, Brown DA, Breit SN, Grygiel JJ, Horvath LG, Stricker PD, Sutherland RL, Henshall SM (2006) Aberrant neuropeptide Y and macrophage inhibitory cytokine-1 expression are early events in prostate cancer development and are associated with poor prognosis. Cancer Epidemiol Biomarkers Prev 15: 711– 716

    Article  PubMed  CAS  Google Scholar 

  47. Ruscica M, Dozio E, Motta M, Magni P (2007) Modulatory actions of neuropeptide Y on prostate cancer growth: role of MAP kinase/ERK 1/2 activation. Adv Exp Med Biol 604: 96–100

    Article  PubMed  Google Scholar 

  48. Ekstrand AJ, Cao R, Bjorndahl M, Nystrom S, Jonsson-Rylander AC, Hassani H, Hallberg B, Nordlander M, Cao Y (2003) Deletion of neuropeptide Y (NPY) 2 receptor in mice results in blockage of NPY-induced angiogenesis and delayed wound healing. Proc Natl Acad Sci USA 100: 6033–6038

    Article  PubMed  CAS  Google Scholar 

  49. Lee EW, Grant DS, Movafagh S, Zukowska Z (2003) Impaired angiogenesis in neuropeptide Y (NPY)-Y2 receptor knockout mice. Peptides 24: 99–106

    Article  PubMed  CAS  Google Scholar 

  50. Lee EW, Michalkiewicz M, Kitlinska J, Kalezic I, Switalska H, Yoo P, Sangkharat A, Ji H, Li L, Michalkiewicz T, Ljubisavljevic M, Johansson H, Grant DS, Zukowska Z (2003) Neuropeptide Y induces ischemic angiogenesis and restores function of ischemic skeletal muscles. J Clin Invest 111: 1853–1862

    PubMed  CAS  Google Scholar 

  51. Zukowska Z, Grant DS, Lee EW (2003) Neuropeptide Y: a novel mechanism for ischemic angiogenesis. Trends Cardiovasc Med 13: 86–92

    Article  PubMed  CAS  Google Scholar 

  52. Zukowska-Grojec Z, Karwatowska-Prokopczuk E, Rose W, Rone J, Movafagh S, Ji H, Yeh Y, Chen WT, Kleinman HK, Grouzmann E, Grant DS (1998) Neuropeptide Y: a novel angiogenic factor from the sympathetic nerves and endothelium. Circ Res 83: 187–195

    PubMed  CAS  Google Scholar 

  53. Kitlinska J (2007) Neuropeptide Y (NPY) in neuroblastoma: effect on growth and vascularization. Peptides 28: 405–412

    Article  PubMed  CAS  Google Scholar 

  54. Kitlinska J, Abe K, Kuo L, Pons J, Yu M, Li L, Tilan J, Everhart L, Lee EW, Zukowska Z, Toretsky JA (2005) Differential effects of neuropeptide Y on the growth and vascularization of neural crest-derived tumors. Cancer Res 65: 1719–1728

    Article  PubMed  CAS  Google Scholar 

  55. Leach MO, Brindle KM, Evelhoch JL, Griffiths JR, Horsman MR, Jackson A, Jayson G, Judson IR, Knopp MV, Maxwell RJ, McIntyre D, Padhani AR, Price P, Rathbone R, Rustin G, Tofts PS, Tozer GM, Vennart W, Waterton JC, Williams SR, Workman P (2003) Assessment of antiangiogenic and antivascular therapeutics using MRI: recommendations for appropriate methodology for clinical trials. Br J Radiol 76: S87–S91

    Article  PubMed  Google Scholar 

  56. Tofts PS (1997) Modeling tracer kinetics in dynamic Gd-DTPA MR imaging. Jmri-J Magn Reson Imaging 7: 91–101

    Article  CAS  Google Scholar 

  57. Tofts PS, Brix G, Buckley DL, Evelhoch JL, Henderson E, Knopp M, Larsson HBW, Lee TY, Mayr NA, Parker GJM, Port RE, Taylor J, Weisskoff RM (1999) Estimating kinetic parameters from dynamic contrast-enhanced T-1-weighted MRI of a diffusable tracer: Standardized quantities and symbols. Jmri-J Magn Reson Imaging 10: 223–232

    Article  CAS  Google Scholar 

  58. Camp RL, Chung GG, Rimm DL (2002) Automated subcellular localization and quantification of protein expression in tissue microarrays. Nat Med 8: 1323–1327

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Nicolas Bloch.

Additional information

This work was supported, in part, by a grant from the Ellison Foundation and grants from the National Institutes of Health, CA116465-02 (NMR), CA112220 and CA116866 (SMG) and RO1-CA-115296(JVF). B.N.B. was supported, in part, by Bayer Healthcare Pharmaceuticals. The authors would like to thank Dr. Melissa Upton, Dr. Jihad Hayek (pathology), and Dr. Fabio Grizzi (microvessel image analysis) for their guidance and assistance.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lenkinski, R.E., Bloch, B.N., Liu, F. et al. An illustration of the potential for mapping MRI/MRS parameters with genetic over-expression profiles in human prostate cancer. Magn Reson Mater Phy 21, 411–421 (2008). https://doi.org/10.1007/s10334-008-0133-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10334-008-0133-3

Keywords

Navigation