Skip to main content

Advertisement

Log in

Origins of retinal intrinsic signals: A series of experiments on retinas of macaque monkeys

  • Review
  • Published:
Japanese Journal of Ophthalmology Aims and scope Submit manuscript

Abstract

Diffuse flash stimuli applied to the ocular fundus evoke light reflectance decreases of the fundus illuminated with infrared observation light. This phenomenon, which is independent of the photopigment bleaching observed as an increase in the reflectance of visible light, is called intrinsic signals. Intrinsic signals, in general, are stimulus-evoked light reflectance changes of neural tissues due to metabolic changes, and they have been extensively investigated in the cerebral cortex. This noninvasive objective technique of functional imaging has good potential as a tool for the early detection of retinal dysfunction. Once the signal properties were studied in detail, however, it became apparent that the intrinsic signals observed in the retina have uniquely interesting properties of their own due to the characteristic layered structure of the retina. Experiments on anesthetized macaque monkeys are reviewed, and the possible origins of the intrinsic signals of the retina are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Webb RH, Hughes GW. Scanning laser ophthalmoscope. IEEE Trans Biomed Eng 1981;28:488–492.

    Article  PubMed  CAS  Google Scholar 

  2. Mainster MA, Timberlake GT, Webb RH, Hughes GW. Scanning laser ophthalmoscopy. Clinical applications. Ophthalmology 1982;89:852–857.

    PubMed  CAS  Google Scholar 

  3. Huang D, Swanson EA, Lin CP, et al. Optical coherence tomography. Science 1991;254:1178–1181.

    Article  PubMed  CAS  Google Scholar 

  4. Hee MR, Izatt JA, Swanson EA, et al. Optical coherence tomography of the human retina. Arch Ophthalmol 1995;113:325–332.

    PubMed  CAS  Google Scholar 

  5. Rushton WA. The difference spectrum and the photosensitivity of rhodopsin in the living human eye. J Physiol 1956;134:11–29.

    PubMed  CAS  Google Scholar 

  6. Hood C, Rushton WA. The Florida retinal densitometer. J Physiol 1971;217:213–229.

    PubMed  CAS  Google Scholar 

  7. Rushton WA. Cone pigment kinetics in the protanope. J Physiol 1963;168:374–388.

    PubMed  CAS  Google Scholar 

  8. Alpern M, Maaseidvaag F, Oba N. The kinetics of cone visual pigments in man. Vision Res 1971;11:539–549.

    Article  PubMed  CAS  Google Scholar 

  9. Alpern M. Rhodopsin kinetics in the human eye. J Physiol 1971;217:447–471.

    PubMed  CAS  Google Scholar 

  10. van Norren D, van de Kraats J. Retinal densitometer with the size of a fundus camera. Vision Res 1989;29:369–374.

    Article  PubMed  Google Scholar 

  11. Kilbride PE, Read JS, Fishman GA, Fishman M. Determination of human cone pigment density difference spectra in spatially resolved regions of the fovea. Vision Res 1983;23:1341–1350.

    Article  PubMed  CAS  Google Scholar 

  12. Kilbride PE, Keehan KM. Visual pigments in the human macula assessed by imaging fundus reflectometry. Appl Opt 1990;29:1427–1435.

    Article  Google Scholar 

  13. Faulkner DJ, Kemp CM. Human rhodopsin measurement using a T.V.-based imaging fundus reflectometer. Vision Res 1984;24:221–231.

    Article  PubMed  CAS  Google Scholar 

  14. Kemp CM, Faulkner DJ, Jacobson SG. The distribution and kinetics of visual pigments in the cat retina. Invest Ophthalmol Vis Sci 1988;29:1056–1065.

    PubMed  CAS  Google Scholar 

  15. Kemp CM, Jacobson SG, Faulkner DJ. Two types of visual dysfunction in autosomal dominant retinitis pigmentosa. Invest Ophthalmol Vis Sci 1988;29:1235–1241.

    PubMed  CAS  Google Scholar 

  16. van Norren D, van de Kraats J. Imaging retinal densitometry with a confocal scanning laser ophthalmoscope. Vis Res 1989;29:1825–1830.

    Article  PubMed  Google Scholar 

  17. Elsner AE, Burns SA, Hughes GW, Webb RH. Reflectometry with a scanning laser ophthalmoscope. Appl Opt 1992;31:3697–3710.

    Article  Google Scholar 

  18. Elsner AE, Burns SA, Beausencourt E, Weiter JJ. Foveal cone photopigment distribution: small alterations associated with macular pigment distribution. Invest Ophthalmol Vis Sci 1998;39:2394–2404.

    PubMed  CAS  Google Scholar 

  19. Zepeda A, Arias C, Sengpiel F. Optical imaging of intrinsic signals: recent developments in the methodology and its applications. J Neurosci Methods 2004;136:1–21.

    Article  PubMed  Google Scholar 

  20. Ts’o DY, Frostig RD, Lieke EE, Grinvald A. Functional organization of primate visual cortex revealed by high resolution optical imaging. Science 1990;249:417–420.

    Article  PubMed  Google Scholar 

  21. Frostig RD, Lieke EE, Ts’o DY, Grinvald A. Cortical functional architecture and local coupling between neuronal activity and the microcirculation revealed by in vivo high-resolution optical imaging of intrinsic signals. Proc Natl Acad Sci U S A 1990;87:6082–6086.

    Article  PubMed  CAS  Google Scholar 

  22. Roe AW, Ts’o DY. Visual topography in primate V2: multiple representation across functional stripes. J Neurosci 1995;15:3689–3715.

    PubMed  CAS  Google Scholar 

  23. Ghose GM, Ts’o DY. Form processing modules in primate area V4. J Neurophysiol 1997;77:2191–2196.

    PubMed  CAS  Google Scholar 

  24. Malonek D, Tootell RB, Grinvald A. Optical imaging reveals the functional architecture of neurons processing shape and motion in owl monkey area MT. Proc R Soc Lond B Biol Sci 1994;258:109–119.

    Article  CAS  Google Scholar 

  25. Tsunoda K, Yamane Y, Nishizaki M, Tanifuji M. Complex objects are represented in macaque inferotemporal cortex by the combination of feature columns. Nat Neurosci 2001;4:832–838.

    Article  PubMed  CAS  Google Scholar 

  26. MacVicar BA, Hochman D. Imaging of synaptically evoked intrinsic optical signals in hippocampal slices. J Neurosci 1991;11:1458–1469.

    PubMed  CAS  Google Scholar 

  27. Bonhoeffer T, Grinvald A. Optical imaging based on intrinsic signals: the methodology. In: Toga AW, Mazziotta JC, editors. Brain mapping. San Diego: Academic Press; 1996. p. 55–97.

    Google Scholar 

  28. Weliky M, Kandler K, Fitzpatrick D, Katz LC. Patterns of excitation and inhibition evoked by horizontal connections in visual cortex share a common relationship to orientation columns. Neuron 1995;15:541–552.

    Article  PubMed  CAS  Google Scholar 

  29. Das A, Gilbert CD. Long-range horizontal connections and their role in cortical reorganization revealed by optical recording of cat primary visual cortex. Nature 1995;375:780–784.

    Article  PubMed  CAS  Google Scholar 

  30. Tsunoda K, Oguchi Y, Hanazono G, Tanifuji M. Mapping cone- and rod-induced retinal responsiveness in macaque retina by optical imaging. Invest Ophthalmol Vis Sci 2004;45:3820–3826.

    Article  PubMed  Google Scholar 

  31. Crittin M, Riva CE. Functional imaging of the human papilla and peripapillary region based on flicker-induced reflectance changes. Neurosci Lett 2004;360:141–144.

    Article  PubMed  CAS  Google Scholar 

  32. Abramoff MD, Kwon YH, Ts’o D, et al. Visual stimulus-induced changes in human near-infrared fundus reflectance. Invest Ophthalmol Vis Sci 2006;47:715–721.

    Article  PubMed  Google Scholar 

  33. Grieve K, Roorda A. Intrinsic signals from human cone photoreceptors. Invest Ophthalmol Vis Sci 2008;49:713–719.

    Article  PubMed  Google Scholar 

  34. Nelson DA, Krupsky S, Pollack A, et al. Special report: noninvasive multi-parameter functional optical imaging of the eye. Ophthalmic Surg Lasers Imaging 2005;36:57–66.

    PubMed  Google Scholar 

  35. Harary HH, Brown JE, Pinto LH. Rapid light-induced changes in near infrared transmission of rods in Bufo marinus. Science 1978;202:1083–1085.

    Article  PubMed  CAS  Google Scholar 

  36. Yao XC, Yamauchi A, Perry B, George JS. Rapid optical coherence tomography and recording functional scattering changes from activated frog retina. Appl Opt 2005;44:2019–2023.

    Article  PubMed  Google Scholar 

  37. Hanazono G, Tsunoda K, Shinoda K, Tsubota K, Miyake Y, Tanifuji M. Intrinsic signal imaging in macaque retina reveals different types of flash-induced light reflectance changes of different origins. Invest Ophthalmol Vis Sci 2007;48:2903–2912.

    Article  PubMed  Google Scholar 

  38. Inomata K, Tsunoda K, Hanazono G, et al. Distribution of retinal responses evoked by transscleral electrical stimulation detected by intrinsic signal imaging in macaque monkeys. Invest Ophthalmol Vis Sci 2008;49:2193–2200.

    Article  PubMed  Google Scholar 

  39. Hanazono G, Tsunoda K, Kazato Y, Tsubota K, Tanifuji M. Evaluating neural activity of retinal ganglion cells by flash-evoked intrinsic signal imaging in macaque retina. Invest Ophthalmol Vis Sci 2008;49:4655–4663.

    Article  PubMed  Google Scholar 

  40. Wali N, Leguire LE. The photopic hill: a new phenomenon of the light adapted electroretinogram. Doc Ophthalmol 1992;80:335–345.

    Article  PubMed  CAS  Google Scholar 

  41. Wagman IH, Waldman J, Naidoff D, Feinschil LB, Cahan R. The recording of the electroretinogram in humans and in animals; investigation of retinal sensitivity following brief flashes of light. Am J Ophthalmol 1954;38:60–69.

    PubMed  CAS  Google Scholar 

  42. Mahroo OA, Lamb TD. Recovery of the human photopic electroretinogram after bleaching exposures: estimation of pigment regeneration kinetics. J Physiol 2004;554:417–437.

    Article  PubMed  CAS  Google Scholar 

  43. Weinhaus RS, Burke JM, Delori FC, Snodderly DM. Comparison of fluorescein angiography with microvascular anatomy of macaque retinas. Exp Eye Res 1995;61:1–16.

    Article  PubMed  CAS  Google Scholar 

  44. Roy C, Sherrington C. On the regulation of the blood supply of the brain. J Physiol 1890;11:85–108.

    PubMed  CAS  Google Scholar 

  45. Villringer A, Dirnagl U. Coupling of brain activity and cerebral blood flow: basis of functional neuroimaging. Cerebrovasc Brain Metab Rev 1995;7:240–276.

    PubMed  CAS  Google Scholar 

  46. Bizheva K, Pflug R, Hermann B, et al. Optophysiology: depth-resolved probing of retinal physiology with functional ultrahigh-resolution optical coherence tomography. Proc Natl Acad Sci U S A 2006;103:5066–5071.

    Article  PubMed  CAS  Google Scholar 

  47. Dawson WW, Trick GL, Litzkow CA. Improved electrode for electroretinography. Invest Ophthalmol Vis Sci 1979;18:988–991.

    PubMed  CAS  Google Scholar 

  48. Gekeler F, Messias A, Ottinger M, Bartz-Schmidt KU, Zrenner E. Phosphenes electrically evoked with DTL electrodes: a study in patients with retinitis pigmentosa, glaucoma, and homonymous visual field loss and normal subjects. Invest Ophthalmol Vis Sci 2006;47:4966–4974.

    Article  PubMed  Google Scholar 

  49. Crapper DR, Noell WK. Retinal excitation and inhibition from direct electrical stimulation. J Neurophysiol 1963;26:924–947.

    PubMed  CAS  Google Scholar 

  50. Knighton RW. An electrically evoked slow potential of the frog’s retina. I. Properties of response. J Neurophysiol 1975;38:185–197.

    PubMed  CAS  Google Scholar 

  51. Stett A, Barth W, Weiss S, Haemmerle H, Zrenner E. Electrical multisite stimulation of the isolated chicken retina. Vision Res 2000;40:1785–1795.

    Article  PubMed  CAS  Google Scholar 

  52. Kaneko A, Saito T. Ionic mechanisms underlying the responses of off-center bipolar cells in the carp retina. II. Studies on responses evoked by transretinal current stimulation. J Gen Physiol 1983;81:603–612.

    Article  PubMed  CAS  Google Scholar 

  53. Toyoda J, Fujimoto M. Application of transretinal current stimulation for the study of bipolar-amacrine transmission. J Gen Physiol 1984;84:915–925.

    Article  PubMed  CAS  Google Scholar 

  54. Shimazu K, Miyake Y, Watanabe S. Retinal ganglion cell response properties in the transcorneal electrically evoked response of the visual system. Vision Res 1999;39:2251–2260.

    Article  PubMed  CAS  Google Scholar 

  55. Margalit E, Thoreson WB. Inner retinal mechanisms engaged by retinal electrical stimulation. Invest Ophthalmol Vis Sci 2006; 47:2606–2612.

    Article  PubMed  Google Scholar 

  56. Byzov AL, Trifonov JA. The response to electric stimulation of horizontal cells in the carp retina. Vis Res 1968;8:817–822.

    Article  PubMed  CAS  Google Scholar 

  57. Murakami M, Takahashi K. Calcium action potential and its use for measurement of reversal potentials of horizontal cell responses in carp retina. J Physiol 1987;386:165–180.

    PubMed  CAS  Google Scholar 

  58. Takahashi K, Murakami M. Calcium action potential in ON-OFF transient amacrine cell of the carp retina. Brain Res 1988; 456:29–37.

    Article  PubMed  CAS  Google Scholar 

  59. Li L, Hayashida Y, Yagi T. Temporal properties of retinal ganglion cell responses to local transretinal current stimuli in the frog retina. Vis Res 2005;45:263–273.

    Article  PubMed  Google Scholar 

  60. Potts AM, Inoue J, Buffum D. The electrically evoked response of the visual system (EER). Invest Ophthalmol 1968;7:269–278.

    PubMed  CAS  Google Scholar 

  61. Potts AM, Inoue J. The electrically evoked response (EER) of the visual system. II. Effect of adaptation and retinitis pigmentosa. Invest Ophthalmol 1969;8:605–612.

    PubMed  CAS  Google Scholar 

  62. Potts AM, Inoue J. The electrically evoked response of the visual system (EER). 3. Further contribution to the origin of the EER. Invest Ophthalmol 1970;9:814–819.

    PubMed  CAS  Google Scholar 

  63. Miyake Y, Yanagida K, Yagasaki K. Clinical application of EER (electrically evoked response). 1. Analysis of EER in normal subjects [in Japanese]. Nippon Ganka Gakkai Zasshi 1980;84:354–360.

    PubMed  CAS  Google Scholar 

  64. Miyake Y, Yanagida K, Yagasaki K. Clinical application of EER (electrically evoked response). 2. Analysis of EER in patients with dysfunctional rod or cone visual pathway [in Japanese]. Nippon Ganka Gakkai Zasshi 1980;84:502–509.

    PubMed  CAS  Google Scholar 

  65. Miyake Y, Yanagida K, Yagasaki K. Clinical application of EER (electrically evoked response). 3. Analysis of EER in patients with central retinal arterial occlusion [in Japanese]. Nippon Ganka Gakkai Zasshi 1980;84:587–593.

    PubMed  CAS  Google Scholar 

  66. Miyake Y, Yanagida K, Yagasaki K. Clinical application of EER (electrically evoked response). Analysis of EER in patients with optic nerve disease [in Japanese]. Nippon Ganka Gakkai Zasshi 1980;84:2047–2052.

    PubMed  CAS  Google Scholar 

  67. Brindley GS. The site of electrical excitation of the human eye. J Physiol 1955;127:189–200.

    PubMed  CAS  Google Scholar 

  68. Toi VV, Riva CE. Variations of blood flow at optic disc nerve head induced by sinusoidal flicker stimulation in cats. J Physiol 1994;482:189–202.

    Google Scholar 

  69. Falsini B, Riva CE, Logean E. Flicker-evoked changes in human optic nerve blood flow: relationship with retinal neural activity. Invest Ophthalmol Vis Sci 2002;43:2309–2316.

    PubMed  Google Scholar 

  70. Riva CE, Logean E, Falsini B. Temporal dynamics and magnitude of the blood flow response at the optic disk in normal subjects during functional retinal flicker-stimulation. Neurosci Lett 2004;356:75–78.

    Article  PubMed  CAS  Google Scholar 

  71. Riva CE, Salgarello T, Logean E, Colotto A, Galan EM, Falsini B. Flicker-evoked response measured at the optic disc rim is reduced in ocular hypertension and early glaucoma. Invest Ophthalmol Vis Sci 2004;45:3662–3668.

    Article  PubMed  Google Scholar 

  72. Kelly DH. Visual response to time-dependent stimuli. I. Amplitude sensitivity measurements. J Opt Soc Am 1961;51:422–429.

    Article  PubMed  CAS  Google Scholar 

  73. Gebhard JW. Thresholds of the human eye for electric stimulation by different wave forms. J Exp Psychol 1952;44:132–140.

    Article  PubMed  CAS  Google Scholar 

  74. Regan D. A high frequency mechanism which underlies visual evoked potentials. Electroencephalogr Clin Neurophysiol 1968;25:231–237.

    Article  PubMed  CAS  Google Scholar 

  75. Tanino T, Kato S, Kawasumi M. Studies on electrically evoked pupillary reflex-indirect reflex and its frequency characteristic. Jpn J Ophthalmol 1981;25:423–429.

    Google Scholar 

  76. Malonek D, Grinvald A. Interactions between electrical activity and cortical microcirculation revealed by imaging spectroscopy: implications for functional brain mapping. Science 1996;272:551–554.

    Article  PubMed  CAS  Google Scholar 

  77. Pouratian N, Toga A. Optical imaging based on intrinsic signals. In: Toga AW, Mazziotta JC, editors. Brain mapping. San Diego: Academic Press; 2002. p. 97–140.

    Chapter  Google Scholar 

  78. Barriga ES, Pattichis M, Ts’o D, et al. Spatiotemporal independent component analysis for the detection of functional responses in cat retinal images. IEEE Trans Med Imaging 2007; 26:1035–1045.

    Article  PubMed  Google Scholar 

  79. Fukuda M, Rajagopalan UM, Homma R, Matsumoto M, Nishizaki M, Tanifuji M. Localization of activity-dependent changes in blood volume to submillimeter-scale functional domains in cat visual cortex. Cereb Cortex 2005;15:823–833.

    Article  PubMed  Google Scholar 

  80. Longo A, Geiser M, Riva CE. Subfoveal choroidal blood flow in response to light-dark exposure. Invest Ophthalmol Vis Sci 2000;41:2678–2683.

    PubMed  CAS  Google Scholar 

  81. Riva CE, Harino S, Shonat RD, Petrig BL. Flicker evoked increase in optic nerve head blood flow in anesthetized cats. Neurosci Lett 1991;128:291–296.

    Article  PubMed  CAS  Google Scholar 

  82. Riva CE, Falsini B, Logean E. Flicker-evoked responses of human optic nerve head blood flow: luminance versus chromatic modulation. Invest Ophthalmol Vis Sci 2001;42:756–762.

    PubMed  CAS  Google Scholar 

  83. Viswanathan S, Frishman LJ, Robson JG, Harwerth RS, Smith EL 3rd. The photopic negative response of the macaque electroretinogram: reduction by experimental glaucoma. Invest Ophthalmol Vis Sci 1999;40:1124–1136.

    PubMed  CAS  Google Scholar 

  84. Viswanathan S, Frishman LJ, Robson JG, Walters JW. The photopic negative response of the flash electroretinogram in primary open angle glaucoma. Invest Ophthalmol Vis Sci 2001;42:514–522.

    PubMed  CAS  Google Scholar 

  85. Narahashi T. Chemicals as tools in the study of excitable membranes. Physiol Rev 1974;54:813–889.

    Article  PubMed  CAS  Google Scholar 

  86. Bloomfield SA. Effect of spike blockade on the receptive-field size of amacrine and ganglion cells in the rabbit retina. J Neurophysiol 1996;75:1878–1893.

    PubMed  CAS  Google Scholar 

  87. Quigley HA, Green WR. The histology of human glaucoma cupping and optic nerve damage: clinicopathologic correlation in 21 eyes. Ophthalmology 1979;86:1803–1830.

    PubMed  CAS  Google Scholar 

  88. Quigley HA, Addicks EM, Green WR. Optic nerve damage in human glaucoma. III. Quantitative correlation of nerve fiber loss and visual field defect in glaucoma, ischemic neuropathy, papilledema, and toxic neuropathy. Arch Ophthalmol 1982;100:135–146.

    PubMed  CAS  Google Scholar 

  89. Quigley HA, Dunkelberger GR, Green WR. Retinal ganglion cell atrophy correlated with automated perimetry in human eyes with glaucoma. Am J Ophthalmol 1989;107:453–464.

    PubMed  CAS  Google Scholar 

  90. Glovinsky Y, Quigley HA, Dunkelberger GR. Retinal ganglion cell loss is size dependent in experimental glaucoma. Invest Ophthalmol Vis Sci 1991;32:484–491.

    PubMed  CAS  Google Scholar 

  91. Frishman LJ, Shen FF, Du L, et al. The scotopic electroretinogram of macaque after retinal ganglion cell loss from experimental glaucoma. Invest Ophthalmol Vis Sci 1996;37:125–141.

    PubMed  CAS  Google Scholar 

  92. Kerrigan-Baumrind LA, Quigley HA, Pease ME, Kerrigan DF, Mitchell RS. Number of ganglion cells in glaucoma eyes compared with threshold visual field tests in the same persons. Invest Ophthalmol Vis Sci 2000;41:741–748.

    PubMed  CAS  Google Scholar 

  93. Mcilwain JT. Receptive fields of optic tract axons and lateral geniculate cells: peripheral extent and barbiturate sensitivity. J Neurophysiol 1964;27:1154–1173.

    PubMed  CAS  Google Scholar 

  94. Mcilwain JT. Some evidence concerning physiological basis of periphery effect in cats retina. Exp Brain Res 1966;1:265–271.

    Article  PubMed  CAS  Google Scholar 

  95. Derrington AM, Lennie P, Wright MJ. Mechanism of peripherally evoked-responses in retinal ganglion-cells. J Physiol 1979;289:299–310.

    PubMed  CAS  Google Scholar 

  96. Toth LJ, Rao SC, Kim DS, Somers D, Sur M. Subthreshold facilitation and suppression in primary visual cortex revealed by intrinsic signal imaging. Proc Natl Acad Sci U S A 1996;93:9869–9874.

    Article  PubMed  CAS  Google Scholar 

  97. Kaplan E, Benardete E. The dynamics of primate retinal ganglion cells. Prog Brain Res 2001;134:17–34.

    Article  PubMed  CAS  Google Scholar 

  98. Yao XC, Zhao YB. Optical dissection of stimulus-evoked retinal activation. Opt Exp 2008;16:12446–12459.

    Article  Google Scholar 

  99. Zhao YB, Yao XC. Intrinsic optical imaging of stimulus-modulated physiological responses in amphibian retina. Opt Lett 2008;33:342–344.

    Article  PubMed  Google Scholar 

  100. Srinivasan VJ, Wojtkowski M, Fujimoto JG, Duker JS. In vivo measurement of retinal physiology with high-speed ultrahigh-resolution optical coherence tomography. Opt Lett 2006;31:2308–2310.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kazushige Tsunoda.

About this article

Cite this article

Tsunoda, K., Hanazono, G., Inomata, K. et al. Origins of retinal intrinsic signals: A series of experiments on retinas of macaque monkeys. Jpn J Ophthalmol 53, 297–314 (2009). https://doi.org/10.1007/s10384-009-0686-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10384-009-0686-3

Key Words

Navigation