Skip to main content

Advertisement

Log in

Immmunological Clearance of Batrachochytrium dendrobatidis Infection at a Pathogen-optimal Temperature in the Hylid Frog Hypsiboas crepitans

  • Original Contribution
  • Published:
EcoHealth Aims and scope Submit manuscript

Abstract

Amphibian declines worldwide have been linked to the fungal disease chytridiomycosis. Its causative agent (Batrachochytrium dendrobatidis, hereafter Bd), however, also infects many nondeclining species. Experimental infections have shown species-specific and temperature-dependent frog responses to Bd infection. Although Bd infection may be eliminated by housing amphibians at temperatures above those tolerated by the fungus, the question of whether frogs can eliminate infection under more favorable conditions remains unanswered. Repeated diagnostics using real-time polymerase chain reaction (rt–PCR) assays of postmetamorphic individuals at 28, 38, 45, 53, and 62 days after exposure demonstrated that Hypsiboas crepitans is able to clear infection within a few weeks at 23°C. Thus, we demonstrate a temperature-independent and likely immunological mechanism for the clearance of Bd in a resistant amphibian species. Future studies are needed to determine the generality of this mechanism among amphibians and to describe the immune factors affecting different outcomes of Bd exposure including resistance to infection, tolerance of infection, and clearance of infection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Aguirre AA, Lampo M (2006) Protocolo de bioseguridad y cuarentena para prevenir la transmisión de enfermedades en anfibios. In: Técnicas de Inventario y Monitoreo para los Anfibios de la Región Tropical Andina, Angulo A, Rueda-Almonacid JV, Rodríguez-Mahecha JV, La Marca E (editors), Bogotá, Colombia.: Conservation International, pp 73–92

    Google Scholar 

  • Alford RA, Bradfield KS, Richards SJ (2007) Global warming and amphibian losses. Nature 447:E3–E4

    Article  CAS  Google Scholar 

  • Beard KH, O’Neill EM (2005) Infection of an invasive frog Eleutherodactylus coqui by the chytrid fungus Batrachochytrium dendrobatidis in Hawaii. Biological Conservation 126:591–595

    Article  Google Scholar 

  • Berger L, Marantelli G, Skerratt LF, Speare R (2005) Virulence of the amphibian chytrid fungus Batrachochytrium dendrobatidis varies with strain. Diseases of Aquatic Organisms 68:47–50

    Article  Google Scholar 

  • Berger L, Speare R, Daszak P, Green DE, Cunningham AA, Goggin CL, et al. (1998) Chytridiomycosis causes amphibian mortality associated with population declines in the rain forests of Australia and Central America. Proceedings of the National Academy of Sciences of the United States of America 95:9031–9036

    Article  CAS  Google Scholar 

  • Berger L, Speare R, Hines HB, Marantelli G, Hyatt AD, McDonald KR, et al. (2004) Effect of season and temperature on mortality in amphibians due to chytridiomycosis. Australian Veterinary Journal 82:434–439

    Article  CAS  Google Scholar 

  • Bishop PJ, Speare R, Poulter R, Butler M, Speare BJ, Hyatt A, et al. (2009) Elimination of the amphibian chytrid fungus Batrachochytrium dendrobatidis by Archey’s frog Leiopelma archeyi. Diseases of Aquatic Organisms 84:9–15

    Article  Google Scholar 

  • Blaustein AR, Romansic JM, Scheessele EA, Han BA, Pessier AP, Longcore JE (2005) Interspecific variation in susceptibility of frog tadpoles to the pathogenic fungus Batrachochytrium dendrobatidis. Conservation Biology 19:1460–1468

    Article  Google Scholar 

  • Bosch J, Martínez-Solano I, Garcia-Paris M (2001) Evidence of a chytrid fungus infection involved in the decline of the common midwife toad (Alytes obstetricans) in protected areas of central Spain. Biological Conservation 27:331–337

    Article  Google Scholar 

  • Boyle DG, Boyle DB, Olsen V, Morgan JAT, Hyatt AD (2004) Rapid quantitative detection of chytridiomycosis (Batrachochytrium dendrobatidis) in amphibian samples using real-time Taqman PCR assay. Diseases of Aquatic Organisms 60:141–148

    Article  CAS  Google Scholar 

  • Briggs CJ, Knapp RA, Vredenburg VT (2010) Enzootic and epizootic dynamics of the chytrid fungal pathogen of amphibians. Proceedings of the National Academy of Sciences of the United States of America 107:9695–9700

    Article  CAS  Google Scholar 

  • Carey C, Bruzgul JE, Livo LJ, Walling ML, Kuehl KA, Dixon BF, et al. (2006) Experimental exposures of boreal toads (Bufo boreas) to a pathogenic chytrid fungus (Batrachochytrium dendrobatidis). EcoHealth 3:5–21

    Article  Google Scholar 

  • Conlon JM, Iwamuro S, King JD (2009) Dermal cytolytic peptides and the system of innate immunity in anurans. Trends in Comparative Endocrinology and Neurobiology 1163:75–82

    CAS  Google Scholar 

  • Corn PS (2007) Amphibians and disease: implications for conservation in the greater Yellowstone ecosystem. Yellowstone Science 15:10–16

    Google Scholar 

  • Daszak P, Cunningham AA, Hyatt AD (2001) Anthropogenic environmental change and the emergence of infectious diseases in wildlife. Acta Tropica 78:103–116

    Article  CAS  Google Scholar 

  • Daszak P, Cunningham AA, Hyatt AD (2003) Infectious diseases and amphibian population declines. Diversity and Distributions 9:141–150

    Article  Google Scholar 

  • Daszak P, Strieby A, Cunningham AA, Longcore JE, Brown CC, Porter D (2004) Experimental evidence that the bullfrog (Rana catesbeiana) is a potential carrier of chytridiomycosis, an emerging fungal disease of amphibians. Herpetological Journal 14:21–27

    Google Scholar 

  • Davidson C, Benard MF, Shaffer HB, Parker JM, O’Leary C, Conlon JM, et al. (2007) Effects of chytrid and carbaryl exposure on survival, growth and skin peptide defenses in foothill yellow-legged frogs. Environmental Science and Technology 41:1771–1776

    Article  CAS  Google Scholar 

  • Davidson EW, Parris M, Collins JP, Longcore JE, Pessier AP, Brunner J (2003) Pathogenicity and transmission of chytridiomycosis in tiger salamanders (Ambystoma tigrinum). Copeia 2003:601–607

    Article  Google Scholar 

  • Faivovich J (2005) Systematic review of the frog family Hylidae, with special reference to Hylinae: phylogenetic analysis and taxonomic revision. Bulletin of the American Museum of Natural History 294:1–240

    Article  Google Scholar 

  • Fisher MC, Bosch J, Yin Z, Stead DA, Walker J, Selway L, et al. (2009) Proteomic and phenotypic profiling of the amphibian pathogen Batrachochytrium dendrobatidis shows that genotype is linked to virulence. Molecular Ecology 18:415–429

    Article  CAS  Google Scholar 

  • Frost DR, Grant T, Faivovich J, Bain RH, Haas A, Haddad CFB, et al. (2006) The amphibian tree of life. Bulletin of the American Museum of Natural History 297:1–370

    Article  Google Scholar 

  • García TS, Romansic JM, Blaustein AR (2006) Survival of three species of anuran metamorphs exposed to UV-B radiation and the pathogenic fungus Batrachochytrium dendrobatidis. Diseases of Aquatic Organisms 72:163–169

    Article  Google Scholar 

  • Hanselmann R, Rodríguez A, Lampo M, Fajardo-Ramos L, Aguirre AA, Kilpatrick AM, et al. (2004) Presence of an emerging pathogen of amphibians in introduced bullfrogs Rana catesbeiana in Venezuela. Biological Conservation 120:115–119

    Article  Google Scholar 

  • Hyatt AD, Boyle DG, Olsen V, Boyle DB, Berger L, Obendorf D, et al. (2007) Diagnostic assay and sampling protocols for the detection of Batrachochytrium dendrobatidis. Diseases of Aquatic Organisms 73:175–192

    Article  CAS  Google Scholar 

  • Kilpatrick AM, Briggs CJ, Daszak P (2010) The ecology and impact of chytridiomycosis: an emerging disease of amphibians. Trends in Ecology & Evolution 25:109–118

    Article  Google Scholar 

  • Kriger KM, Hero JM (2006) Survivorship in wild frogs infected with chytridiomycosis. EcoHealth 3:171–177

    Article  Google Scholar 

  • Kriger KM, Hero JM (2007) Large-scale seasonal variation in the prevalence and severity of chytridiomycosis. Journal of Zoology London 271:352–359

    Google Scholar 

  • Kriger KM, Hero JM, Asthon KJ (2006a) Cost efficiency in the detection of chytridiomycosis using PCR assay. Diseases of Aquatic Organisms 71:149–154

    Article  CAS  Google Scholar 

  • Kriger KM, Hines HB, Hyatt A, Boyle DG, Hero JM (2006b) Techniques for detecting chytridiomycosis in wild frogs: comparing histology with real-time Taqman PCR. Diseases of Aquatic Organisms 71:141–148

    Article  CAS  Google Scholar 

  • Kriger KM, Pereoglou F, Hero JM (2007) Latitudinal variation in the prevalence and intensity of chytrid (Batrachochytrium dendrobatidis) infection in eastern Australia. Conservation Biology 21:1280–1290

    Article  Google Scholar 

  • La Marca E, Lips KR, Lötters S, Puschendorf R, Ibañez R, Ron S, et al. (2005) Catastrophic population declines and extinctions in neotropical harlequin frogs (Bufonidae: Atelopus). Biotropica 37:190–201

    Article  Google Scholar 

  • Lamirande EW, Nichols DK (2002) Effects of host age on susceptibility of cutaneous chytridiomycosis in blue-and-yellow poison dart frogs (Dendrobates tinctorius). In: McKinnel RG, Carlson DL (editors), Proceedings of the Sixth International Symposium on the Pathology of Reptiles and Amphibians, University of Minnesota Printing Services, Saint Paul, MN, pp 3–13

  • Lampo M, Rodríguez A, La Marca E, Daszak P (2006) A chytridiomycosis outbreak and a severe dry season precede the disappearance of Atelopus species from the Venezuelan Andes. Herpetological Journal 16:395–402

    Google Scholar 

  • Lips KR (1999) Mass mortality and population declines of anurans at an upland site in western Panama. Conservation Biology 13:117–125

    Article  Google Scholar 

  • Lips KR, Brem F, Brenes R, Reeve JD, Alford RA, Voyles J, et al. (2006) Emerging infectious disease and the loss of biodiversity in a neotropical amphibian community. Proceedings of the National Academy of Sciences of the United States of America 103:3165–3170

    Article  CAS  Google Scholar 

  • Longcore JE, Pessier AP, Nichols DK (1999) Batrachochytrium dendrobatidis gen. et sp. nov., a chytrid pathogenic to amphibians. Mycologia 91:219–227

    Article  Google Scholar 

  • McDonald KR, Méndez D, Müller R, Freeman AB, Speare R (2005) Decline in the prevalence of chytridiomycosis in frog populations in North Queensland, Australia. Pacific Conservation Biology 11:114–120

    Google Scholar 

  • Murray KA, Skerratt LF, Speare R, McCallum H (2009) Impact and dynamics of disease in species threatened by the amphibian chytrid fungus Batrachochytrium dendrobatidis. Conservation Biology 23:1242–1252

    Article  Google Scholar 

  • Muths E, Corn PS, Pessier AP, Green DE (2003) Evidence for disease-related amphibian decline in Colorado. Biological Conservation 110:357–365

    Article  Google Scholar 

  • Nichols DK, Lamirande EW, Pessier AP, Longcore JE (2001) Experimental transmission of cutaneous chytridiomycosis in dendrobatid frogs. Journal of Wildlife Diseases 37:1–11

    CAS  Google Scholar 

  • Ouellet M, Mikaelian I, Pauli BD, Rodrigue J, Green DM (2005) Historical evidence of widespread chytrid infection in North American amphibian populations. Conservation Biology 19:1431–1440

    Article  Google Scholar 

  • Pessier AP, Nichols DK, Longcore JE, Fuller MS (1999) Cutaneous chytridiomycosis in poison dart frogs (Dendrobates spp.) and White’s tree frogs (Litoria caerulea). Journal of Veterinary Diagnostic Investigation 11:194–199

    CAS  Google Scholar 

  • Pilliod DS, Muths E, Scherer RD, Bartlet PE, Corn PS, Hossack BR, et al. (2010) Effects of amphibian chytrid fungus on individual survival probability in wild boreal toads. Conservation Biology (DOI: 10.1111/j.1523-1739.2010.01506.x:1-9)

  • Piotrowski JS, Annis SL, Longcore JE (2004) Physiology of Batrachochytrium dendrobatidis, a chytrid pathogen of amphibians. Mycologia 96:9–15

    Article  Google Scholar 

  • Pounds JA, Bustamante MR, Coloma LA, Consuegra AJ, Fogden MPL, Foster PN, et al. (2006) Widespread amphibian extinctions from epidemic disease driven by global warming. Nature 439:161–167

    Article  CAS  Google Scholar 

  • Pounds JA, Fogden MPL, Campbell JH (1999) Biological response to climate change on a tropical mountain. Nature 398:611–615

    Article  CAS  Google Scholar 

  • Puschendorf R, Bolaños F, Chaves G (2006) The amphibian chytrid fungus along an altitudinal transect before the first reported declines in Costa Rica. Biological Conservation 132:136–142

    Article  Google Scholar 

  • Rachowicz LJ, Vredenburg VT (2004) Transmission of Batrachochytrium dendrobatidis within and between amphibian life stages. Diseases of Aquatic Organisms 61:75–83

    Article  Google Scholar 

  • Retallick RWR, Miera V (2007) Strain differences in the amphibian chytrid Batrachochytrium dendrobatidis and non-permanent, sub-lethal effects of infection. Diseases of Aquatic Organisms 75:201–207

    Article  Google Scholar 

  • Retallick R, McCallum H, Speare R (2004) Endemic infection of the amphibian chytrid fungus in a frog community post-decline. PLoS Biology 2:1965–1971

    Article  CAS  Google Scholar 

  • Richards-Zawacki CL (2010) Thermoregulatory behaviour affects prevalence of chytrid fungal infection in a wild population of Panamanian golden frogs. Proceedings of the Royal Society of London. Series B: Biological Sciences 277:519–528

    Article  Google Scholar 

  • Richmond JQ, Savage AE, Zamudio KR, Rosenblum EB (2009) Toward immunogenetic studies of amphibian chytridiomycosis: linking innate and acquired immunity. BioScience 59:311–320

    Article  Google Scholar 

  • Rodríguez-Contreras A, Señaris JC, Lampo M, Rivero R (2008) Rediscovery of Atelopus cruciger (Anura: Bufonidae) with notes on its current status in the Cordillera de La Costa, Venezuela. Oryx 42:301–304

    Article  Google Scholar 

  • Rollins-Smith LA, Carey C, Conlon JM, Reinert LK, Doersam JK, Bergman T, et al. (2003) Activities of temporin family peptides against the chytrid fungus (Batrachochytrium dendrobatidis) associated with global amphibian declines. Antimicrobial Agents and Chemotherapy 47:1157–1160

    Article  CAS  Google Scholar 

  • Rollins-Smith LA, Carey C, Longcore J, Doersam JK, Boutte A, Bruzgal JE, et al. (2002) Activity of antimicrobial skin peptides from ranid frogs against Batrachochytrium dendrobatidis, the chytrid fungus associated with global amphibian declines. Developmental and Comparative Immunology 26:471–479

    Article  CAS  Google Scholar 

  • Rollins-Smith LA, Ramsey JP, Reinert LK, Woodhams DC, Livo LJ, Carey C (2009) Immune defenses of Xenopus laevis against Batrachochytrium dendrobatidis. Frontiers in Bioscience (Scholar Edition) 1:68–91

    Google Scholar 

  • Rollins-Smith LA, Reinert LK, O’Leary CJ, Houston LE, Woodhams DC (2005) Antimicrobial peptide defenses in amphibian skin. Integrative and Comparative Biology 45:137–142

    Article  CAS  Google Scholar 

  • Rollins-Smith LA, Woodhams DC, Reinert LK, Vredenburg VT, Briggs CJ, Nielsen PF, et al. (2006) Antimicrobial peptide defenses of the mountain yellow-legged frog (Rana muscosa). Developmental and Comparative Immunology 30:831–842

    Article  CAS  Google Scholar 

  • Rowley JJL, Alford RA (2007) Behavior of Australian rainforest stream frogs may affect the transmission of chytridiomycosis. Diseases of Aquatic Organisms 77:1–9

    Article  Google Scholar 

  • Sánchez D, Chacón-Ortiz A, León F, Han BA, Lampo M (2008) Widespread occurrence of an emerging pathogen in amphibian communities of the Venezuelan Andes. Biological Conservation 141:2898–2905

    Article  Google Scholar 

  • Skerratt LF, Berger L, Speare R, Cashins S, McDonald KR, Phillott AA, et al. (2007) Spread of chytridiomycosis has caused the rapid global decline and extinction of frogs. EcoHealth 4:125–134

    Article  Google Scholar 

  • Stuart SN, Chanson JS, Cox NA, Young BA, Rodrigues ASL, Fischman DL, et al. (2004) Status and trends of amphibian declines and extinctions worldwide. Science 306:1783–1786

    Article  CAS  Google Scholar 

  • Voordouw MJ, Adama D, Houston B, Govindarajulu P, Robinson J (2010) Prevalence of the pathogenic chytrid fungus, Batrachochytrium dendrobatidis, in an endangered population of northern leopard frogs, Rana pipiens. BMC Ecology. doi:10.1186/1472-6785-10-6

  • Voyles J, Young S, Berger L, Campbell C, Voyles WF, Dinudom A, et al. (2009) Pathogenesis of chytridiomycosis, a cause of catastrophic amphibian declines. Science 326:582–585

    Article  CAS  Google Scholar 

  • Woodhams DC, Alford RA (2005) Ecology of chytridiomycosis in rainforests stream frog assemblages of tropical Queensland. Conservation Biology 19:1449–1459

    Article  Google Scholar 

  • Woodhams DC, Alford RA, Marantelli G (2003) Emerging disease of amphibians cured by elevated body temperature. Diseases of Aquatic Organisms 55:65–67

    Article  Google Scholar 

  • Woodhams DC, Ardipradja K, Alford RA, Marantelli G, Reinert LK, Rollins-Smith LA (2007) Resistance to chytridiomycosis varies among amphibian species and is correlated with skin peptide defenses. Animal Conservation 10:409–417

    Article  Google Scholar 

Download references

Acknowledgements

This research was partly supported by Aicotel de Telefonía C.A. and Servicios Safel 777, S.A. under the Ley Orgánica para la Ciencia, Tecnología e Innovación (LOCTI). Samples were collected and genetic information accessed under permits issued by the Ministerio del Poder Popular para el Ambiente. We are grateful to D. Boyle and A. Hyatt (Australian Animal Health Laboratory, Division of Livestock Industries, CSIRO, Victoria, Australia) for supplying zoospore quantification standards, to Laboratorios Docentes de la Facultad de Ciencias de la Universidad Central de Venezuela for supplying fruit flies to Leira Salazar and Flor Pujol for the use of their rt-PCR equipment and to Carmen Zulay García and Fabiola León for their assistance in the laboratory.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Lampo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Márquez, M., Nava-González, F., Sánchez, D. et al. Immmunological Clearance of Batrachochytrium dendrobatidis Infection at a Pathogen-optimal Temperature in the Hylid Frog Hypsiboas crepitans . EcoHealth 7, 380–388 (2010). https://doi.org/10.1007/s10393-010-0350-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10393-010-0350-x

Keywords

Navigation