Skip to main content
Log in

Optofluidic waveguides: II. Fabrication and structures

  • Research Paper
  • Published:
Microfluidics and Nanofluidics Aims and scope Submit manuscript

Abstract

We review fabrication methods and common structures for optofluidic waveguides, defined as structures capable of optical confinement and transmission through fluid filled cores. Cited structures include those based on total internal reflection, metallic coatings, and interference based confinement. Configurations include optical fibers and waveguides fabricated on flat substrates (integrated waveguides). Some examples of optofluidic waveguides that are included in this review are Photonic Crystal Fibers (PCFs) and two-dimensional photonic crystal arrays, Bragg fibers and waveguides, and Anti Resonant Reflecting Optical Waveguides (ARROWs). An emphasis is placed on integrated ARROWs fabricated using a thin-film deposition process, which illustrates how optofluidic waveguides can be combined with other microfluidic elements in the creation of lab-on-a-chip devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  • Altkorn R, Koev I, Van Duyne RP, Litorja M (1997a) Low-loss liquid-core optical fiber for low-refractive-index liquids: fabrication, characterization, and application in Raman spectroscopy. Appl Opt 36:8992–8998

    Article  Google Scholar 

  • Altkorn R, Koev I, Gottlieb A (1997b) Waveguide capillary cell for low-refractive-index liquids. Appl Spectrosc 51:1554–1558

    Article  Google Scholar 

  • Balslev S, Kristensen A (2005) Microfluidic single-mode laser using high-order Bragg grating and antiguiding segments. Opt Exp 13:344–351

    Article  Google Scholar 

  • Barber JP, Conkey DB, Lee JR, Hubbard NB, Howell LL, Schmidt H, Hawkins AR (2005) Fabrication of hollow waveguides with sacrificial aluminum cores. IEEE Photonic Tech L 17:363–365

    Article  Google Scholar 

  • Barber JP, Lunt EJ, George ZA, Yin D, Schmidt H, Hawkins AR (2006a) Integrated hollow waveguides with arch-shaped cores. IEEE Photonic Tech L 18: 28–30

    Article  Google Scholar 

  • Barber JP, Lunt EJ, Yin D, Schmidt H, Hawkins AR (2006b) Monolithic fabrication of hollow ARROW based sensors. Proc SPIE 6110:61100H

    Article  Google Scholar 

  • Bernini R, DeNuccio E, Minardo A, Zeni L, Sarro PM (2007) Integrated silicon optical sensors based on hollow core waveguide. Proc SPIE 6477:647714

    Article  Google Scholar 

  • Brown M, Vestad T, Oakey J, Marr DWM (2006) Optical waveguides via viscosity-mismatched microfluidic flows. Appl Phys Lett 88:134109

    Article  Google Scholar 

  • Campopiano S, Bernini R, Zeni L, Sarro PM (2004) Microfluidic sensor based on integrated optical hollow waveguides. Opt Lett 29:1894–1896

    Article  Google Scholar 

  • Chow E, Grot A, Mirkarimi LW, Sigalas M, Girolami G (2004) Ultracompact biochemical sensor built with two-dimensional photonic crystal microcavity. Opt Lett 29:1093–1095

    Article  Google Scholar 

  • Cox FM, Argyros A, Large MCJ (2006) Liquid-filled hollow core microstructured polymer optical fiber. Opt Express 14:4135–4140

    Article  Google Scholar 

  • Craighead H (2006) Future lab-on-a-chip technologies for interrogating individual molecules. Nature 442:387–393

    Article  Google Scholar 

  • Dallas T, Dasgupta PK (2004) Light at the end of the tunnel: recent analytical applications of liquid-core waveguides. Trends Anal Chem 23:1–8

    Article  Google Scholar 

  • Dasgupta PK, Genfa Z, Poruthoor SK, Caldwell S, Dong S, LiuHigh S (1998) Sensitivity gas sensors based on gas-permeable liquid core waveguides and long-path absorbance detection. Anal Chem 70:4661–4669

    Article  Google Scholar 

  • Datta A, Eom I, Dhar A, Kuban P, Manor R, Ahmad I, Gangopadhyay S, Dallas T, Holtz M, Temkin H, Dasgupta P (2003) Microfabrication and characterization of Teflon AF-coated liquid core waveguide channels in silicon. IEEE Sens J 3:788–795

    Article  Google Scholar 

  • DeCorby RG, Ponnampalam N, Nguyen HT, Pai MM, Clement TJ (2007) Guided self-assembly of integrated hollow Bragg waveguides. Opt Express 15:3902–3915

    Article  Google Scholar 

  • Dell’Olio F, Passaro VMN (2007) Optical sensing by optimized silicon slot waveguides. Opt Express 15:4977–4993

    Article  Google Scholar 

  • Dreß P, Franke H (1996) An optical fiber with a liquid H2O core. Proc SPIE 2686:157–163

    Article  Google Scholar 

  • Duguay MA, Kokubun Y, Koch T, Pfeiffer L (1986) Antiresonant reflecting optical waveguides in SiO2-Si multilayer structures. Appl Phys Lett 49:13–15

    Article  Google Scholar 

  • Edwards JM, Hamblin MN, Fuentes HV, Peeni BA, Lee ML, Woolley AT, Hawkins AR (2007) Thin film electroosmotic pumps for biomicrofluidic applications. Biomicrofluidics 1:014101

    Article  Google Scholar 

  • Erickson D, Rockwood T, Emery T, Scherer A, Psaltis D (2006) Nanofluidic tuning of photonic crystal circuits. Opt Lett 31:59–61

    Article  Google Scholar 

  • Fink Y, Winn JN, Fan S, Chen C, Michel J, Joannopoulos JD, Thomas EL (1998) A dielectric omnidirectional reflector. Science 282:1679–1682

    Article  Google Scholar 

  • Fouckhardt H, Grosse A, Grewe M, Kuhnke M (2001) Micro flow modules with combined fluidflow channel and optical detection waveguide—hyper Rayleigh scattering as a case study. Fresenius J Anal Chem 371:218–227

    Article  Google Scholar 

  • Gopal V, Harrington JA (2003) Deposition and characterization of metal sulfide dielectric coatings for hollow glass waveguides. Opt Express 11:3182–3187

    Article  Google Scholar 

  • Hawkins AR, Lunt EJ, Holmes M, Phillips B, Yin D, Rudenko MI, Schmidt H (2007) Advances in integrated hollow waveguides for on-chip sensors. Proc SPIE 6462:64620U

    Article  Google Scholar 

  • Hecht J (1998) City of light. Oxford University Press, New York

    Google Scholar 

  • Hecht J (2002) Understanding fiber optics, 4th edn. Prentice-Hall, Upper Saddle River

    Google Scholar 

  • Hubbard NB, Howell LL, Barber JP, Conkey DB, Hawkins AR, Schmidt H (2005) Mechanical models and design rules for on-chip micro-channels with sacrificial cores. J Micromech Microeng 15:720–727

    Article  Google Scholar 

  • Jenkins RM, McNie ME, Blockley AF, Price N, McQuillan J (2003) Hollow waveguides for integrated optics. In: Proceedings of European Conference on Optical Communications (ECOC), Rimini, Italy

  • Jensen JB, Pedersen LH, Hoiby PE, Nielsen LB, Hansen TP, Folkenberg JR, Riishede J, Noordegraaf D, Nielsen K, Carlsen A, Bjarklev A (2004) Photonic crystal fiber based evanescent-wave sensor for detection of biomolecules in aqueous solutions. Opt Lett 29:1974–1976

    Article  Google Scholar 

  • Knight J (2003) Photonic crystal fibres. Nature 424:847–851

    Article  Google Scholar 

  • Lee JR, Barber JP, George ZA, Lee ML, Schmidt H, Hawkins AR (2007) Micro-channels with different core shapes fabricated using sacrificial etching. J Micro Nanolith MEMS MOEMS 6:013010

    Article  Google Scholar 

  • Liu C (2006) Foundations of MEMS. Pearson Prentice Hall, Upper Saddle River

    Google Scholar 

  • Lo S, Wang M, Chen C (2004) Semiconductor hollow optical waveguides formed by omni-directional reflectors. Opt Express 12:6589–6593

    Article  Google Scholar 

  • Martelli C, Canning J, Lyytikainen K, Groothoff N (2005) Water-core Fresnel fiber. Opt Express 13:3890–3895

    Article  Google Scholar 

  • McDonald JC, Whitesides GM (2002) Poly(dimethylsiloxane) as a material for fabricating microfluidic devices. Acc Chem Res 35:491–499

    Article  Google Scholar 

  • Mohebbi M, Fedosejevs R, Gopal V, Harrington JA (2002) Silver-coated hollow-glass waveguide for applications at 800 nm. Appl Opt 41:7031–7035

    Article  Google Scholar 

  • Monat C, Domachuk P, Eggleton BJ (2007) Integrated optofluidics: a new river of light. Nat Phot 1:106–114

    Article  Google Scholar 

  • Peeni BA, Conkey DB, Barber JP, Kelly R, Lee ML, Woolley AT, Hawkins AR (2005) Planar thin film device for capillary electrophoresis. Lab Chip 5:501–505

    Article  Google Scholar 

  • Peeni BA, Lee ML, Hawkins AR, Woolley AT (2006) Sacrificial layer microfluidic device fabrication methods. Electrophoresis 27:4888–4895

    Article  Google Scholar 

  • Pone E, Dubois C, Guo N, Gao Y, Dupois A, Boismenu F, Lacroix S, Skorobogatiy M (2006) Drawing of the hollow all-polymer Bragg fibers. Opt Express 14:5838–5852

    Article  Google Scholar 

  • Psaltis D, Quake SR, Yang C (2006) Developing optofluidic technology through the fusion of microfluidics and optics. Nature 442:381–386

    Article  Google Scholar 

  • Rindorf L, Jensen JB, Dufva M, Pedersen LH, Hoiby PE, Bang O (2006) Photonic crystal fiber long-period gratings for biochemical sensing. Opt Express 14:8224–8231

    Article  Google Scholar 

  • Risk WP, Kim H, Miller RD, Temkin H, Gangopadhyay S (2004) Optical waveguides with an aqueous core and a low-index nanoporous cladding. Opt Express 12:6446–6455

    Article  Google Scholar 

  • Schelle B, Dreß P, Franke H, Klein KF, Slupek J (1999) Physical characterization of lightguide capillary cells. J Phys D Appl Phys 32:3157–3163

    Article  Google Scholar 

  • Schmidt H, Yin D, Yang W, Wu B, Conkey DB, Barber JP, Hawkins AR (2006) Towards integration of quantum interference in alkali atoms on a chip. Proc SPIE 6130:613006

    Article  Google Scholar 

  • Skivesen N, Tetu A, Kristensen M, Kjems J, Frandsen LH, Borel PI (2007) Photonic-crystal waveguide biosensor. Opt Express 15:3169–3176

    Article  Google Scholar 

  • Stone J (1972) Optical transmission in liquid-core quartz fibers. Appl Phys Lett 20:239–240

    Article  Google Scholar 

  • Temelkuran B, Hart SD, Benolt G, Joannopoulos JD, Fink Y (2002) Wavelength-scalable hollow optical fibres with large photonic bandgaps for CO2 laser transmission. Nature 420:650–653

    Article  Google Scholar 

  • Tsunoda K, Nomura A, Yamada J, Nishi S (1989) The possibility of signal enhancement in liquid absorption spectrometry with a long capillary cell utilizing successive total reflection at the outer cell surface. Appl Spectrosc 43:49–55

    Article  Google Scholar 

  • Wang T, Aiken JH, Hule CW, Hartwick RA (1991) Nanoliter-scale multireflection cell for absorption detection in capillary electrophoresis. Anal Chem 63:1372–1375

    Article  Google Scholar 

  • Wang S, Huang X, Fang Z, Dasgupta P (2001) A miniaturized liquid core waveguide-capillary electrophoresis system with flow injection sample introduction and fluorometric detection using light-emitting diodes. Anal Chem 73:4545–4549

    Article  Google Scholar 

  • Wolfe DB, Conroy RS, Garstecki P, Mayers BT, Fischbach MA, Paul KE, Prentiss M, Whitesides GM (2004) Dynamic control of liquid-core/liquid-cladding optical waveguides. Proc Natl Acad Sci 101:12434–12438

    Article  Google Scholar 

  • Wolfe DB, Vezenov DV, Mayers BT, Whitesides GM, Conroy RS, Prentiss MG (2005) Diffusion-controlled optical elements for optofluidics. App Phys Lett 87:181105

    Article  Google Scholar 

  • Xu Q, Almeida VR, Panepucci RR, Lipson M (2004) Experimental demonstration of guiding and confining light in nanometer-size low-refractive-index material. Opt Lett 29:1626–1628

    Article  Google Scholar 

  • Yin D, Barber JP, Hawkins AR, Deamer DW, Schmidt H (2004) Integrated optical waveguides with liquid cores. Appl Phys Lett 85:3477–3479

    Article  Google Scholar 

  • Yin D, Barber JP, Lunt EJ, Hawkins AR, Schmidt H (2005a) Optical characterization of arch-shaped ARROW waveguides with liquid cores. Opt Exp 13:10564–10569

    Article  Google Scholar 

  • Yin D, Barber JP, Hawkins AR, Schmidt H (2005b) Low-loss integrated optical sensors based on hollow-core ARROW waveguides. Proc SPIE 5730:218–225

    Article  Google Scholar 

  • Yin D, Barber JP, Hawkins AR, Schmidt H (2006a) Waveguide loss optimization in hollow-core ARROW waveguides. Opt Express 13:9331–9336

    Article  Google Scholar 

  • Yin D, Barber JP, Deamer DW, Hawkins AR, Schmidt H (2006b) Single-molecule detection using planar integrated optics on a chip. Opt Lett 31:2136–2138

    Article  Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge funding for this work by the National Institutes of Health (NIH/NIBIB) under grants R21EB003430 and R01EB006097, the National Science Foundation (NSF) under grant ECS-0528730, NASA/UARC Aligned Research Program (ARP) grant, a California Systemwide Biotechnology Research & Education Program Training Grant (UC-GREAT 2005-245), a National Academies Keck Futures Initiative Award (NAKFI-Nano14), and a grant from the David Huber Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aaron R. Hawkins.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hawkins, A.R., Schmidt, H. Optofluidic waveguides: II. Fabrication and structures. Microfluid Nanofluid 4, 17–32 (2008). https://doi.org/10.1007/s10404-007-0194-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10404-007-0194-z

Keywords

Navigation