Skip to main content
Log in

Nanobiosensors: optofluidic, electrical and mechanical approaches to biomolecular detection at the nanoscale

  • Review Paper
  • Published:
Microfluidics and Nanofluidics Aims and scope Submit manuscript

Abstract

Next generation biosensor platforms will require significant improvements in sensitivity, specificity and parallelity in order to meet the future needs of a variety of fields ranging from in vitro medical diagnostics, pharmaceutical discovery and pathogen detection. Nanobiosensors, which exploit some fundamental nanoscopic effect in order to detect a specific biomolecular interaction, have now been developed to a point where it is possible to determine in what cases their inherent advantages over traditional techniques (such as nucleic acid microarrays) more than offset the added complexity and cost involved constructing and assembling the devices. In this paper we will review the state of the art in nanoscale biosensor technologies, focusing primarily on optofluidic type devices but also covering those which exploit fundamental mechanical and electrical transduction mechanisms. A detailed overview of next generation requirements is presented yielding a series of metrics (namely limit of detection, multiplexibility, measurement limitations, and ease of fabrication/assembly) against which the various technologies are evaluated. Concluding remarks regarding the likely technological impact of some of the promising technologies are also provided.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Armani AM, Vahala KJ (2006) Heavy water detection using ultra-high-Q microcavities. Opt Lett 31(12):1896–1898

    Google Scholar 

  • Armani DK, Kippenberg TJ, Spillane SM, Vahala KJ (2003) Ultra-high-Q toroid microcavity on a chip. Nature 421(6926):925–928

    Google Scholar 

  • Arnold S, Khoshsima M, Teraoka I, Holler S, Vollmer F (2003) Shift of whispering-gallery modes in microspheres by protein adsorption. Opt Lett 28(4):272–274

    Google Scholar 

  • Aslan K, Lakowicz JR, Geddes CD (2004) Nanogold-plasmon-resonance-based glucose sensing. Anal Biochem 330(1):145–155

    Google Scholar 

  • Bard A (2001) Electrochemical methods: fundamentals and applications. Wiley, New York

    Google Scholar 

  • Bauer LA, Birenbaum NS, Meyer GJ (2004) Biological applications of high aspect ratio nanoparticles. J Mater Chem 14(4):517–526

    Google Scholar 

  • Berger CEH, Kooyman RPH, Greve J (1994) Resolution in surface-plasmon microscopy. Rev Sci Instrum 65(9):2829–2836

    Google Scholar 

  • Besteman K, Lee JO, Wiertz FGM, Heering HA, Dekker C (2003) Enzyme-coated carbon nanotubes as single-molecule biosensors. Nano Lett 3(6):727–730

    Google Scholar 

  • Boussaad S, Tao NJ, Zhang R, Hopson T, Nagahara LA (2003) In situ detection of cytochrome c adsorption with single walled carbon nanotube device. Chem Commun 13:1502–1503

    Google Scholar 

  • Boyd RW, Heebner JE (2001) Sensitive disk resonator photonic biosensor. Appl Opt 40(31):5742–5747

    Google Scholar 

  • Brandenburg A (1997) Differential refractometry by an integrated-optical Young interferometer. Sens Actuators B Chem 39(1–3):266–271

    Google Scholar 

  • Braun T, Barwich V, Ghatkesar MK, Bredekamp AH, Gerber C, Hegner M, Lang HP (2005) Micromechanical mass sensors for biomolecular detection in a physiological environment. Phys Rev E 72:031907

    Google Scholar 

  • Burg TP, Manalis SR (2003) Suspended microchannel resonators for biomolecular detection. Appl Phys Lett 83(13):2698–2700

    Google Scholar 

  • Burg TP, Mirza AR, Milovic N, Tsau CH, Popescu GA, Foster JS, Manalis SR (2006) Vacuum-packaged suspended microchannel resonant mass sensor for biomolecular detection. J Microelectromech Syst 15(6):1466–1476

    Google Scholar 

  • Cao YC, Huang ZL, Liu TC, Wang HQ, Zhu XX, Wang Z, Zhao YD, Liu MX, Luo QM (2006) Preparation of silica encapsulated quantum dot encoded beads for multiplex assay and its properties. Anal Biochem 351(2):193–200

    Google Scholar 

  • Caruso F (2004) Colloids and colloid assemblies: synthesis, modification, organization and utilization of colloid particles. Wiley-VCH, Weinheim, Chichester

    Google Scholar 

  • Chah S, Hammond MR, Zare RN (2005) Gold nanoparticles as a colorimetric sensor for protein conformational changes. Chem Biol 12(3):323–328

    Google Scholar 

  • Chao CY, Fung W, Guo LJ (2006) Polymer microring resonators for biochemical sensing applications. IEEE J Sel Top Quantum Electron 12(1):134–142

    Google Scholar 

  • Chen RJ, Choi HC, Bangsaruntip S, Yenilmez E, Tang XW, Wang Q, Chang YL, Dai HJ (2004) An investigation of the mechanisms of electronic sensing of protein adsorption on carbon nanotube devices. J Am Chem Soc 126(5):1563–1568

    Google Scholar 

  • Cheng MMC, Cuda G, Bunimovich YL, Gaspari M, Heath JR, Hill HD, Mirkin CA, Nijdam AJ, Terracciano R, Thundat T, Ferrari M (2006) Nanotechnologies for biomolecular detection and medical diagnostics. Curr Opin Chem Biol 10(1):11–19

    Google Scholar 

  • Chinowsky TM, Quinn JG, Bartholomew DU, Kaiser R, Elkind JL (2003) Performance of the Spreeta 2000 integrated surface plasmon resonance affinity sensor. Sens Actuators B Chem 91(1–3):266–274

    Google Scholar 

  • Chow E, Grot A, Mirkarimi LW, Sigalas M, Girolami G (2004) Ultracompact biochemical sensor built with two-dimensional photonic crystal microcavity. Opt Lett 29(10):1093–1095

    Google Scholar 

  • Cleland AN, Roukes ML (1998) A nanometre-scale mechanical electrometer. Nature 392(6672):160–162

    Google Scholar 

  • Craighead HG (2000) Nanoelectromechanical systems. Science 290(5496):1532–1535

    Google Scholar 

  • Cui Y, Lieber CM (2001) Functional nanoscale electronic devices assembled using silicon nanowire building blocks. Science 291(5505):851–853

    Google Scholar 

  • Cui Y, Wei QQ, Park HK, Lieber CM (2001) Nanowire nanosensors for highly sensitive and selective detection of biological and chemical species. Science 293(5533):1289–1292

    Google Scholar 

  • Cunningham AJ (1998) Introduction to bioanalytical sensors. Wiley, New York

    Google Scholar 

  • D’Amico A, Di Natale C (2001) A contribution on some basic definitions of sensors properties. IEEE Sens J 1(3):183–190

    Google Scholar 

  • Dahlin AB, Tegenfeldt JO, Hook F (2006) Improving the instrumental resolution of sensors based on localized surface plasmon resonance. Anal Chem 78(13):4416–4423

    Google Scholar 

  • Dawson ED, Moore CL, Smagala JA, Dankbar DM, Mehlmann M, Townsend MB, Smith CB, Cox NJ, Kuchta RD, Rowlen KL (2006) MChip: a tool for influenza surveillance. Anal Chem 78(22):7610–7615

    Google Scholar 

  • Dostalek J, Vaisocherova H, Homola J (2005) Multichannel surface plasmon resonance biosensor with wavelength division multiplexing. Sens Actuators B Chem 108(1–2):758–764

    Google Scholar 

  • Eggins BR (1996) Biosensors: an introduction. Wiley, New York

    Google Scholar 

  • Ekinci KL, Roukes ML (2005) Nanoelectromechanical systems. Rev Sci Instrum 76:6

    Google Scholar 

  • Ekinci KL, Huang XMH, Roukes ML (2004) Ultrasensitive nanoelectromechanical mass detection. Appl Phys Lett 84(22):4469–4471

    Google Scholar 

  • Endo T, Kerman K, Nagatani N, Hiepa HM, Kim DK, Yonezawa Y, Nakano K, Tamiya E (2006) Multiple label-free detection of antigen-antibody reaction using localized surface plasmon resonance-based core-shell structured nanoparticle layer nanochip. Anal Chem 78(18):6465–6475

    Google Scholar 

  • Erickson D, Rockwood T, Emery T, Scherer A, Psaltis D (2006) Nanofluidic tuning of photonic crystal circuits. Opt Lett 31(1):59–61

    Google Scholar 

  • Evoy S, DiLello N, Deshpande V, Narayanan A, Liu H, Riegelman M, Martin BR, Hailer B, Bradley JC, Weiss W, Mayer TS, Gogotsi Y, Bau HH, Mallouk TE, Raman S (2004) Dielectrophoretic assembly and integration of nanowire devices with functional CMOS operating circuitry. Microelectron Eng 75(1):31–42

    Google Scholar 

  • Fang SP, Lee HJ, Wark AW, Corn RM (2006) Attomole microarray detection of MicroRNAs by nanoparticle-amplified SPR imaging measurements of surface polyadenylation reactions. J Am Chem Soc 128(43):14044–14046

    Google Scholar 

  • Gao XH, Nie SM (2004) Quantum dot-encoded mesoporous beads with high brightness and uniformity: rapid readout using flow cytometry. Anal Chem 76(8):2406–2410

    Google Scholar 

  • Gorodetsky ML, Savchenkov AA, Ilchenko VS (1996) Ultimate Q of optical microsphere resonators. Opt Lett 21(7):453–455

    Google Scholar 

  • Growdon JH (1999) Biomarkers of Alzheimer disease. Arch Neurol 56(3):281–283

    Google Scholar 

  • Gu Z, Belzer SW, Gibson CS, Bankowski MJ, Hayden RT (2003) Multiplexed, real-time PCR for quantitative detection of human adenovirus. J Clin Microbiol 41(10):4636–4641

    Google Scholar 

  • Gupta AK, Nair PR, Akin D, Ladisch MR, Broyles S, Alam MA, Bashir R (2006) Anomalous resonance in a nanomechanical biosensor. Proc Natl Acad Sci USA 103(36):13362–13367

    Google Scholar 

  • Guzman MG, Kouri G (2004) Dengue diagnosis, advances and challenges. Int J Infect Dis 8(2):69–80

    Google Scholar 

  • Haes AJ, Van Duyne RP (2002) A nanoscale optical blosensor: sensitivity and selectivity of an approach based on the localized surface plasmon resonance spectroscopy of triangular silver nanoparticles. J Am Chem Soc 124(35):10596–10604

    Google Scholar 

  • Haes AJ, Van Duyne RP (2004) A unified view of propagating and localized surface plasmon resonance biosensors. Anal Bioanal Chem 379(7–8):920–930

    Google Scholar 

  • Haes AJ, Stuart DA, Nie SM, Van Duyne RP (2004) Using solution-phase nanoparticles, surface-confined nanoparticle arrays and single nanoparticles as biological sensing platforms. J Fluoresc 14(4):355–367

    Google Scholar 

  • Haes AJ, Chang L, Klein WL, Van Duyne RP (2005) Detection of a biomarker for Alzheimer’s disease from synthetic and clinical samples using a nanoscale optical biosensor. J Am Chem Soc 127(7):2264–2271

    Google Scholar 

  • Hahm J, Lieber CM (2004) Direct ultrasensitive electrical detection of DNA and DNA sequence variations using nanowire nanosensors. Nano Lett 4(1):51–54

    Google Scholar 

  • Han MY, Gao XH, Su JZ, Nie S (2001) Quantum-dot-tagged microbeads for multiplexed optical coding of biomolecules. Nat Biotechnol 19(7):631–635

    Google Scholar 

  • Hangarter CM, Myung NV (2005) Magnetic alignment of nanowires. Chem Mater 17(6):1320–1324

    Google Scholar 

  • Hanumegowda NM, Stica CJ, Patel BC, White I, Fan XD (2005) Refractometric sensors based on microsphere resonators. Appl Phys Lett 87:201107

    Google Scholar 

  • Haynes CL, Van Duyne RP (2001) Nanosphere lithography: a versatile nanofabrication tool for studies of size-dependent nanoparticle optics. J Phys Chem B 105(24):5599–5611

    Google Scholar 

  • Haynes CL, McFarland AD, Zhao LL, Van Duyne RP, Schatz GC, Gunnarsson L, Prikulis J, Kasemo B, Kall M (2003) Nanoparticle optics: The importance of radiative dipole coupling in two-dimensional nanoparticle arrays. J Phys Chem B 107(30):7337–7342

    Google Scholar 

  • He PG, Dai LM (2004) Aligned carbon nanotube-DNA electrochemical sensors. Chem Commun 3:348–349

    Google Scholar 

  • Heideman RG, Lambeck PV (1999) Remote opto-chemical sensing with extreme sensitivity: design, fabrication and performance of a pigtailed integrated optical phase-modulated Mach-Zehnder interferometer system. Sens Actuators B Chem 61(1–3):100–127

    Google Scholar 

  • Hernandez J, Thompson IM (2004) Prostate-specific antigen: a review of the validation of the most commonly used cancer biomarker. Cancer 101(5):894–904

    Google Scholar 

  • Homola J, Koudela I, Yee SS (1999a) Surface plasmon resonance sensors based on diffraction gratings and prism couplers: sensitivity comparison. Sens Actuators B Chem 54(1–2):16–24

    Google Scholar 

  • Homola J, Yee SS, Gauglitz G (1999b) Surface plasmon resonance sensors: review. Sens Actuators B Chem 54(1–2):3–15

    Google Scholar 

  • Homola J, Vaisocherova H, Dostalek J, Piliarik M (2005) Multi-analyte surface plasmon resonance biosensing. Methods 37(1):26–36

    Google Scholar 

  • Huang Y, Duan XF, Wei QQ, Lieber CM (2001) Directed assembly of one-dimensional nanostructures into functional networks. Science 291(5504):630–633

    Google Scholar 

  • Huang SM, Woodson M, Smalley R, Liu J (2004) Growth mechanism of oriented long single walled carbon nanotubes using “fast-heating” chemical vapor deposition process. Nano Lett 4(6):1025–1028

    Google Scholar 

  • Huang B, Yu F, Zare RN (2007) Surface plasmon resonance imaging using a high numerical aperture microscope objective. Anal Chem 79(7):2979–2983

    Google Scholar 

  • Hulteen JC, Vanduyne RP (1995) Nanosphere lithography—a materials general fabrication process for periodic particle array surfaces. J Vac Sci Technol a Vac Surf Films 13(3):1553–1558

    Google Scholar 

  • Hunter RJ (1981) Zeta potential in colloid science: principles and applications. Academic, London

    Google Scholar 

  • Ilchenko VS, Matsko AB (2006) Optical resonators with whispering-gallery modes—Part II: Applications. IEEE J Sel Top Quantum Electron 12(1):15–32

    Google Scholar 

  • Ilic B, Czaplewski D, Craighead HG, Neuzil P, Campagnolo C, Batt C (2000) Mechanical resonant immunospecific biological detector. Appl Phys Lett 77(3):450–452

    Google Scholar 

  • Ilic B, Czaplewski D, Zalalutdinov M, Craighead HG, Neuzil P, Campagnolo C, Batt C (2001) Single cell detection with micromechanical oscillators. J Vac Sci Technol B 19(6):2825–2828

    Google Scholar 

  • Ilic B, Craighead HG, Krylov S, Senaratne W, Ober C, Neuzil P (2004a) Attogram detection using nanoelectromechanical oscillators. J Appl Phys 95(7):3694–3703

    Google Scholar 

  • Ilic B, Yang Y, Craighead HG (2004b) Virus detection using nanoelectromechanical devices. Appl Phys Lett 85(13):2604–2606

    Google Scholar 

  • Ilic B, Yang Y, Aubin K, Reichenbach R, Krylov S, Craighead HG (2005) Enumeration of DNA molecules bound to a nanomechanical oscillator. Nano Lett 5(5):925–929

    Google Scholar 

  • Joannopoulos JD, Meade RD, Winn JW (1995) Photonic crystals: molding the flow of light. Princeton University Press, Princeton, New Jersey

    MATH  Google Scholar 

  • Jordan CE, Frutos AG, Thiel AJ, Corn RM (1997) Surface plasmon resonance imaging measurements of DNA hybridization adsorption and streptavidin/DNA multilayer formation at chemically modified gold surfaces. Anal Chem 69(24):4939–4947

    Google Scholar 

  • Josse F, Bender F, Cernosek RW (2001) Guided shear horizontal surface acoustic wave sensors for chemical and biochemical detection in liquids. Anal Chem 73(24):5937–5944

    Google Scholar 

  • Jung LS, Campbell CT, Chinowsky TM, Mar MN, Yee SS (1998) Quantitative interpretation of the response of surface plasmon resonance sensors to adsorbed films. Langmuir 14(19):5636–5648

    Google Scholar 

  • Kalantar-Zadeh K, Wlodarski W, Chen YY, Fry BN, Galatsis K (2003) Novel Love mode surface acoustic wave based immunosensors. Sens Actuators B Chem 91(1–3):143–147

    Google Scholar 

  • Karlsson R (2004) SPR for molecular interaction analysis: a review of emerging application areas. J Mol Recognit 17(3):151–161

    MathSciNet  Google Scholar 

  • Kelly KL, Coronado E, Zhao LL, Schatz GC (2003) The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment. J Phys Chem B 107(3):668–677

    Google Scholar 

  • Kim S, Jung JM, Choi DG, Jung HT, Yang SM (2006) Patterned arrays of Au rings for localized surface plasmon resonance. Langmuir 22(17):7109–7112

    Google Scholar 

  • Kim DK, Kerman K, Saito M, Sathuluri RR, Endo T, Yamamura S, Kwon YS, Tamiya E (2007) Label-free DNA biosensor based on localized surface plasmon resonance coupled with interferometry. Anal Chem 79(5):1855–1864

    Google Scholar 

  • Kong J, Soh HT, Cassell AM, Quate CF, Dai HJ (1998) Synthesis of individual single-walled carbon nanotubes on patterned silicon wafers. Nature 395(6705):878–881

    Google Scholar 

  • Kong J, Franklin NR, Zhou CW, Chapline MG, Peng S, Cho KJ, Dai HJ (2000) Nanotube molecular wires as chemical sensors. Science 287(5453):622–625

    Google Scholar 

  • Kopp MU, de Mello AJ, Manz A (1998) Chemical amplification: continuous-flow PCR on a chip. Science 280(5366):1046–1048

    Google Scholar 

  • Kress-Rogers E (ed) (1997) Handbook of biosensors and electronic noses: medicine, food, and the environment. CRC Press, Boca Raton

    Google Scholar 

  • Krioukov E, Klunder DJW, Driessen A, Greve J, Otto C (2002) Sensor based on an integrated optical microcavity. Opt Lett 27(7):512–514

    Google Scholar 

  • Lange K, Blaess G, Voigt A, Gotzen R, Rapp M (2006) Integration of a surface acoustic wave biosensor in a microfluidic polymer chip. Biosens Bioelectron 22(2):227–232

    Google Scholar 

  • Larrimore L, Nad S, Zhou XJ, Abruna H, McEuen PL (2006) Probing electrostatic potentials in solution with carbon nanotube transistors. Nano Lett 6(7):1329–1333

    Google Scholar 

  • Lee MR, Fauchet PM (2007) Two-dimensional silicon photonic crystal based biosensing platform for protein detection. Opt Express 15(8):4530–4535

    Google Scholar 

  • Lee HJ, Nedelkov D, Corn RM (2006) Surface plasmon resonance imaging measurements of antibody arrays for the multiplexed detection of low molecular weight protein biomarkers. Anal Chem 78(18):6504–6510

    Google Scholar 

  • Li HX, Rothberg LJ (2004) Label-free colorimetric detection of specific sequences in genomic DNA amplified by the polymerase chain reaction. J Am Chem Soc 126(35):10958–10961

    Google Scholar 

  • Li Z, Chen Y, Li X, Kamins TI, Nauka K, Williams RS (2004) Sequence-specific label-free DNA sensors based on silicon nanowires. Nano Lett 4(2):245–247

    Google Scholar 

  • Li C, Curreli M, Lin H, Lei B, Ishikawa FN, Datar R, Cote RJ, Thompson ME, Zhou CW (2005) Complementary detection of prostate-specific antigen using ln(2)O(3) nanowires and carbon nanotubes. J Am Chem Soc 127(36):12484–12485

    Google Scholar 

  • Li YA, Wark AW, Lee HJ, Corn RM (2006) Single-nucleotide polymorphism genotyping by nanoparticle-enhanced surface plasmon resonance imaging measurements of surface ligation reactions. Anal Chem 78(9):3158–3164

    Google Scholar 

  • Lieber CM, Wang ZL (2007) Functional nanowires. MRS Bull 32(2):99–108

    Google Scholar 

  • Liu RH, Lodes MJ, Nguyen T, Siuda T, Slota M, Fuji HS, McShea A (2006) Validation of a fully integrated microfluidic array device for influenza A subtype identification and sequencing. Anal Chem 78(12):4184–4193

    Google Scholar 

  • Lou JY, Tong LM, Ye ZZ (2005) Modeling of silica nanowires for optical sensing. Opt Express 13(6):2135–2140

    Google Scholar 

  • Lu PS (2006) Early diagnosis of avian influenza. Science 312(5772):337–337

    Google Scholar 

  • Lucklum R, Hauptmann P (2006) Acoustic microsensors—the challenge behind microgravimetry. Anal Bioanal Chem 384(3):667–682

    Google Scholar 

  • Luff BJ, Wilkinson JS, Piehler J, Hollenbach U, Ingenhoff J, Fabricius N (1998) Integrated optical Mach-Zehnder biosensor. J Lightwave Technol 16(4):583–592

    Google Scholar 

  • Mahar B, Laslau C, Yip R, Sun Y (2007) Development of carbon nanotube-based sensors—a review. IEEE Sens J 7(1–2):266–284

    Google Scholar 

  • Majumdar A (2002) Bioassays based on molecular nanomechanics. Disease Markers 18(4):167–174

    Google Scholar 

  • Marazuela MD, Moreno-Bondi MC (2002) Fiber-optic biosensors—an overview. Anal Bioanal Chem 372(5–6):664–682

    Google Scholar 

  • Marx KA (2003) Quartz crystal microbalance: a useful tool for studying thin polymer films and complex biomolecular systems at the solution-surface interface. Biomacromolecules 4(5):1099–1120

    Google Scholar 

  • Matsko AB, Ilchenko VS (2006) Optical resonators with whispering-gallery modes—Part I: Basics. IEEE J Sel Top Quantum Electron 12(1):3–14

    Google Scholar 

  • McBride MT, Masquelier D, Hindson BJ, Makarewicz AJ, Brown S, Burris K, Metz T, Langlois RG, Tsang KW, Bryan R, Anderson DA, Venkateswaran KS, Milanovich FP, Colston BW (2003) Autonomous detection of aerosolized Bacillus anthracis and Yersinia pestis. Anal Chem 75(20):5293–5299

    Google Scholar 

  • McCaman MT, Murakami P, Pungor E, Hahnenberger KM, Hancock WS (2001) Analysis of recombinant adenoviruses using an integrated microfluidic chip-based system. Anal Biochem 291(2):262–268

    Google Scholar 

  • McEuen PL, Fuhrer MS, Park HK (2002) Single-walled carbon nanotube electronics. IEEE Trans Nanotechnol 1(1):78–85

    Google Scholar 

  • McFarland AD, Van Duyne RP (2003) Single silver nanoparticles as real-time optical sensors with zeptomole sensitivity. Nano Lett 3(8):1057–1062

    Google Scholar 

  • Medintz IL, Uyeda HT, Goldman ER, Mattoussi H (2005) Quantum dot bioconjugates for imaging, labelling and sensing. Nat Mater 4(6):435–446

    Google Scholar 

  • Nath N, Chilkoti A (2002) A colorimetric gold nanoparticle sensor to interrogate biomolecular interactions in real time on a surface. Anal Chem 74(3):504–509

    Google Scholar 

  • Nelson BP, Frutos AG, Brockman JM, Corn RM (1999) Near-infrared surface plasmon resonance measurements of ultrathin films. 1. Angle shift and SPR imaging experiments. Anal Chem 71(18):3928–3934

    Google Scholar 

  • Nelson BP, Grimsrud TE, Liles MR, Goodman RM, Corn RM (2001) Surface plasmon resonance imaging measurements of DNA and RNA hybridization adsorption onto DNA microarrays. Anal Chem 73(1):1–7

    Google Scholar 

  • Otsuki S, Tamada K, Wakida S (2005) Wavelength-scanning surface plasmon resonance imaging. Appl Opt 44(17):3468–3472

    Google Scholar 

  • Ouyang H, Striemer CC, Fauchet PM (2006) Quantitative analysis of the sensitivity of porous silicon optical biosensors. Appl Phys Lett 88:163108

    Google Scholar 

  • Patolsky F, Zheng GF, Hayden O, Lakadamyali M, Zhuang XW, Lieber CM (2004) Electrical detection of single viruses. Proc Natl Acad Sci USA 101(39):14017–14022

    Google Scholar 

  • Patolsky F, Zheng GF, Lieber CM (2006) Nanowire-based biosensors. Anal Chem 78(13):4260–4269

    Article  Google Scholar 

  • Pregibon DC, Toner M, Doyle PS (2007) Multifunctional encoded particles for high-throughput biomolecule analysis. Science 315(5817):1393–1396

    Google Scholar 

  • Prieto F, Sepulveda B, Calle A, Llobera A, Dominguez C, Abad A, Montoya A, Lechuga LM (2003) An integrated optical interferometric nanodevice based on silicon technology for biosensor applications. Nanotechnology 14(8):907–912

    Google Scholar 

  • Rabe J, Buttgenbach S, Schroder J, Hauptmann P (2003) Monolithic miniaturized quartz microbalance array and its application to chemical sensor systems for liquids. IEEE Sens J 3(4):361–368

    Google Scholar 

  • Rao YL, Zhang GG (2006) Enhancing the sensitivity of SAW sensors with nanostructures. Curr Nanosci 2(4):311–318

    Google Scholar 

  • Rasooly A, Herold KE (2006) Biosensors for the analysis of food- and waterborne pathogens and their toxins. J AOAC Int 89(3):873–883

    Google Scholar 

  • Riboh JC, Haes AJ, McFarland AD, Yonzon CR, Van Duyne RP (2003) A nanoscale optical biosensor: real-time immunoassay in physiological buffer enabled by improved nanoparticle adhesion. J Phys Chem B 107(8):1772–1780

    Google Scholar 

  • Rosenblatt S, Yaish Y, Park J, Gore J, Sazonova V, McEuen PL (2002) High performance electrolyte gated carbon nanotube transistors. Nano Lett 2(8):869–872

    Google Scholar 

  • Ross JS, Schenkein DP, Kashala O, Linette GP, Stec J, Symmans WF, Pusztai L, Hortobagyi GN (2004) Pharmacogenomics. Adv Anat Pathol 11(4):211–220

    Google Scholar 

  • Rothenhausler B, Knoll W (1988) Surface-plasmon microscopy. Nature 332(6165):615–617

    Google Scholar 

  • Saleh B, Teich M (1991) Fundamentals of photonics. Wiley, New York

    Google Scholar 

  • Sander C (2000) Genomic medicine and the future of health care. Science 287(5460):1977–1978

    Google Scholar 

  • Schmidt B, Almeida V, Manolatou C, Preble S, Lipson M (2004) Nanocavity in a silicon waveguide for ultrasensitive nanoparticle detection. Appl Phys Lett 85(21):4854–4856

    Google Scholar 

  • Schofield CL, Field RA, Russell DA (2007) Glyconanoparticles for the colorimetric detection of cholera toxin. Anal Chem 79(4):1356–1361

    Google Scholar 

  • Seydack M (2005) Nanoparticle labels in immunosensing using optical detection methods. Biosens Bioelectron 20(12):2454–2469

    Google Scholar 

  • Shim SB, Imboden M, Mohanty P (2007) Synchronized oscillation in coupled nanomechanical oscillators. Science 316(5821):95–99

    Google Scholar 

  • Shimizu Y, Egashira M (1999) Basic aspects and challenges of semiconductor gas sensors. MRS Bull 24(6):18–24

    Google Scholar 

  • Shumaker-Parry JS, Campbell CT (2004) Quantitative methods for spatially resolved adsorption/desorption measurements in real time by surface plasmon resonance microscopy. Anal Chem 76(4):907–917

    Google Scholar 

  • Sidransky D (2002) Emerging molecular markers of cancer. Nat Rev Cancer 2(3):210–219

    Google Scholar 

  • Sinha N, Ma JZ, Yeow JTW (2006) Carbon nanotube-based sensors. J Nanosci Nanotechnol 6(3):573–590

    Google Scholar 

  • Skivesen N, Tetu A, Kristensen M, Kjems J, Frandsen LH, Borel PI (2007) Photonic-crystal waveguide biosensor. Opt Express 15(6):3169–3176

    Google Scholar 

  • Smith PA, Nordquist CD, Jackson TN, Mayer TS, Martin BR, Mbindyo J, Mallouk TE (2000) Electric-field assisted assembly and alignment of metallic nanowires. Appl Phys Lett 77(9):1399–1401

    Google Scholar 

  • Spangler BD, Wilkinson EA, Murphy JT, Tyler BJ (2001) Comparison of the Spreeta (R) surface plasmon resonance sensor and a quartz crystal microbalance for detection of Escherichia coli heat-labile enterotoxin. Anal Chim Acta 444(1):149–161

    Google Scholar 

  • Srinivas PR, Kramer BS, Srivastava S (2001) Trends in biomarker research for cancer detection. Lancet Oncol 2(11):698–704

    Google Scholar 

  • Srinivas PR, Verma M, Zhao YM, Srivastava S (2002) Proteomics for cancer biomarker discovery. Clin Chem 48(8):1160–1169

    Google Scholar 

  • Stern E, Klemic JF, Routenberg DA, Wyrembak PN, Turner-Evans DB, Hamilton AD, LaVan DA, Fahmy TM, Reed MA (2007) Label-free immunodetection with CMOS-compatible semiconducting nanowires. Nature 445(7127):519–522

    Google Scholar 

  • Stetzenbach LD, Buttner MP, Cruz P (2004) Detection and enumeration of airborne biocontaminants. Curr Opin Biotechnol 15(3):170–174

    Google Scholar 

  • Storhoff JJ, Elghanian R, Mucic RC, Mirkin CA, Letsinger RL (1998) One-pot colorimetric differentiation of polynucleotides with single base imperfections using gold nanoparticle probes. J Am Chem Soc 120(9):1959–1964

    Google Scholar 

  • Straub TM, Chandler DP (2003) Towards a unified system for detecting waterborne pathogens. J Microbiol Methods 53(2):185–197

    Google Scholar 

  • Su XD, Wu YJ, Knoll W (2005) Comparison of surface plasmon resonance spectroscopy and quartz crystal microbalance techniques for studying DNA assembly and hybridization. Biosens Bioelectron 21(5):719–726

    Google Scholar 

  • Tao NJ, Boussaad S, Huang WL, Arechabaleta RA, D’Agnese J (1999) High resolution surface plasmon resonance spectroscopy. Rev Sci Instrum 70(12):4656–4660

    Google Scholar 

  • Tetz KA, Pang L, Fainman Y (2006) High-resolution surface plasmon resonance sensor based on linewidth-optimized nanohole array transmittance. Opt Lett 31(10):1528–1530

    Google Scholar 

  • Unfricht DW, Colpitts SL, Fernandez SM, Lynes MA (2005) Grating-coupled surface plasmon resonance: a cell and protein microarray platform. Proteomics 5(17):4432–4442

    Google Scholar 

  • Usui-Aoki K, Shimada K, Nagano M, Kawai M, Koga H (2005) A novel approach to protein expression profiling using antibody microarrays combined with surface plasmon resonance technology. Proteomics 5(9):2396–2401

    Google Scholar 

  • Vollmer F, Braun D, Libchaber A, Khoshsima M, Teraoka I, Arnold S (2002) Protein detection by optical shift of a resonant microcavity. Appl Phys Lett 80(21):4057–4059

    Google Scholar 

  • Wanekaya AK, Chen W, Myung NV, Mulchandani A (2006) Nanowire-based electrochemical biosensors. Electroanalysis 18(6):533–550

    Google Scholar 

  • Wang ZL (2003) Nanowires and nanobelts: materials, properties and devices. Kluwer, Boston

    Google Scholar 

  • Wang J (2005) Carbon-nanotube based electrochemical biosensors: a review. Electroanalysis 17(1):7–14

    Google Scholar 

  • Wang L, Tan WH (2006) Multicolor FRET silica nanoparticles by single wavelength excitation. Nano Lett 6(1):84–88

    Google Scholar 

  • Wang WU, Chen C, Lin KH, Fang Y, Lieber CM (2005) Label-free detection of small-molecule-protein interactions by using nanowire nanosensors. Proc Natl Acad Sci USA 102(9):3208–3212

    Google Scholar 

  • Wang XD, Song JH, Wang ZL (2007) Nanowire and nanobelt arrays of zinc oxide from synthesis to properties and to novel devices. J Mater Chem 17(8):711–720

    Google Scholar 

  • Ward AM, Catto JWF, Hamdy FC (2001) Prostate specific antigen: biology, biochemistry and available commercial assays. Ann Clin Biochem 38:633–651

    Google Scholar 

  • Wassaf D, Kuang GN, Kopacz K, Wu QL, Nguyen Q, Toews M, Cosic J, Jacques J, Wiltshire S, Lambert J, Pazmany CC, Hogan S, Ladner RC, Nixon AE, Sexton DJ (2006) High-throughput affinity ranking of antibodies using surface plasmon resonance microarrays. Anal Biochem 351(2):241–253

    Google Scholar 

  • Wu GH, Datar RH, Hansen KM, Thundat T, Cote RJ, Majumdar A (2001) Bioassay of prostate-specific antigen (PSA) using microcantilevers. Nat Biotechnol 19(9):856–860

    Google Scholar 

  • Wulfkuhle JD, Liotta LA, Petricoin EF (2003) Proteomic applications for the early detection of cancer. Nat Rev Cancer 3(4):267–275

    Google Scholar 

  • Xia YN, Yang PD, Sun YG, Wu YY, Mayers B, Gates B, Yin YD, Kim F, Yan YQ (2003) One-dimensional nanostructures: synthesis, characterization, and applications. Adv Mater 15(5):353–389

    Google Scholar 

  • Xu HX, Sha MY, Wong EY, Uphoff J, Xu YH, Treadway JA, Truong A, O’Brien E, Asquith S, Stubbins M, Spurr NK, Lai EH, Mahoney W (2003) Multiplexed SNP genotyping using the Qbead (TM) system: a quantum dot-encoded microsphere-based assay. Nucleic Acids Res 31:e43

    Google Scholar 

  • Yang YT, Callegari C, Feng XL, Ekinci KL, Roukes ML (2006) Zeptogram-scale nanomechanical mass sensing. Nano Lett 6(4):583–586

    Google Scholar 

  • Ymeti A, Greve J, Lambeck PV, Wink T, van Hovell S, Beumer TAM, Wijn RR, Heideman RG, Subramaniam V, Kanger JS (2007) Fast, ultrasensitive virus detection using a young interferometer sensor. Nano Lett 7(2):394–397

    Google Scholar 

  • Yonzon CR, Jeoungf E, Zou SL, Schatz GC, Mrksich M, Van Duyne RP (2004) A comparative analysis of localized and propagating surface plasmon resonance sensors: the binding of concanavalin a to a monosaccharide functionalized self-assembled monolayer. J Am Chem Soc 126(39):12669–12676

    Google Scholar 

  • Yu CX, Irudayaraj J (2007) Multiplex biosensor using gold nanorods. Anal Chem 79(2):572–579

    Google Scholar 

  • Yuk JS, Jung JW, Jung SH, Han JA, Kim YM, Ha KS (2005) Sensitivity of ex situ and in situ spectral surface plasmon resonance sensors in the analysis of protein arrays. Biosens Bioelectron 20(11):2189–2196

    Google Scholar 

  • Zaytseva NV, Montagna RA, Baeumner AJ (2005) Microfluidic biosensor for the serotype-specific detection of Dengue virus RNA. Anal Chem 77(23):7520–7527

    Google Scholar 

  • Zhang H, Kim ES (2005) Micromachined acoustic resonant mass sensor. J Microelectromech Syst 14(4):699–706

    Google Scholar 

  • Zhang CS, Xu JL, Ma WL, Zheng WL (2006a) PCR microfluidic devices for DNA amplification. Biotechnol Adv 24(3):243–284

    Google Scholar 

  • Zhang J, Lang HP, Huber F, Bietsch A, Grange W, Certa U, McKendry R, Guntgerodt HJ, Hegner M, Gerber C (2006b) Rapid and label-free nanomechanical detection of biomarker transcripts in human RNA. Nat Nanotechnol 1(3):214–220

    Google Scholar 

  • Zhao J, Zhang XY, Yonzon CR, Haes AJ, Van Duyne RP (2006) Localized surface plasmon resonance biosensors. Nanomedicine 1(2):219–228

    Google Scholar 

  • Zheng GF, Patolsky F, Cui Y, Wang WU, Lieber CM (2005) Multiplexed electrical detection of cancer markers with nanowire sensor arrays. Nat Biotechnol 23(10):1294–1301

    Google Scholar 

  • Zhu HY, White IM, Suter JD, Zourob M, Fan XD (2007) Integrated refractive index optical ring resonator detector for capillary electrophoresis. Anal Chem 79(3):930–937

    Google Scholar 

Download references

Acknowledgments

The authors of this article are thankful for the financial support of the National Science Foundation under grant number CBET-0529045, the National Institutes of Health—National Institute of Biomedical Imaging and Bioengineering under grant number R21EB007031, the Biomolecular Devices and Analysis program of the Nanobiotechnology Center at Cornell University, and the Defense Advanced Research Projects Agency Young Investigator Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Erickson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Erickson, D., Mandal, S., Yang, A.H.J. et al. Nanobiosensors: optofluidic, electrical and mechanical approaches to biomolecular detection at the nanoscale. Microfluid Nanofluid 4, 33–52 (2008). https://doi.org/10.1007/s10404-007-0198-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10404-007-0198-8

Keywords

Navigation