Skip to main content
Log in

Enhanced thermal conductivity of nanofluids: a state-of-the-art review

  • Review
  • Published:
Microfluidics and Nanofluidics Aims and scope Submit manuscript

Abstract

Adding small particles into a fluid in cooling and heating processes is one of the methods to increase the rate of heat transfer by convection between the fluid and the surface. In the past decade, a new class of fluids called nanofluids, in which particles of size 1–100 nm with high thermal conductivity are suspended in a conventional heat transfer base fluid, have been developed. It has been shown that nanofluids containing a small amount of metallic or nonmetallic particles, such as Al2O3, CuO, Cu, SiO2, TiO2, have increased thermal conductivity compared with the thermal conductivity of the base fluid. In this work, effective thermal conductivity models of nanofluids are reviewed and comparisons between experimental findings and theoretical predictions are made. The results show that there exist significant discrepancies among the experimental data available and between the experimental findings and the theoretical model predictions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

c p :

Specific heat capacity

d :

Diameter

h :

Average heat transfer coefficient

h x :

Local heat transfer coefficient

k :

Thermal conductivity

k B :

Boltzmann constant, 1.3807 × 10−23 J/K

n :

Empirical shape factor

Nu :

Nusselt number

Pr :

Prandtl number

r :

Radius

Re :

Reynolds number

t :

Nanolayer thickness

T :

Temperature

α:

Thermal diffusivity

µ:

Dynamic viscosity

ν:

Kinematic viscosity

ρ:

Density

ϕ:

Volume fraction

ψ:

Sphericity

cl:

Cluster

eff:

Nanofluid

p:

Nanoparticles

f:

Base fluid

l:

Liquid nanolayer

References

  • Assael MJ, Metaxa IN, Arvanitidis J, Christofilos D, Lioutas C (2005) Thermal conductivity enhancement in aqueous suspensions of carbon multi-walled and double-walled nanotubes in the presence of two different dispersants. Int J Thermophys 26(3):647–664

    Article  Google Scholar 

  • Beck MP, Yuan Y, Warrier P, Teja AS (2009) The effect of particle size on the thermal conductivity of alumina nanofluids. J Nanopart Res 11(5):1129–1136

    Article  Google Scholar 

  • Ben-Abdallah P (2006) Heat transfer through near-field interactions in nanofluids. Appl Phys Lett 89(11):113117

    Article  Google Scholar 

  • Bhattacharya P, Saha SK, Yadav A, Phelan PE, Prasher RS (2004) Brownian dynamics simulation to determine the effective thermal conductivity of nanofluids. J Appl Phys 95(11I):6492–6494

    Article  Google Scholar 

  • Bruggeman DAG (1935) The calculation of various physical constants of heterogeneous substances, 1. The dielectric constants and conductivities of mixtures composed of isotropic substances. Ann Phys (Leipzig) 24(5):636–664

    Google Scholar 

  • Chandrasekar M, Suresh S (2009) A review on the mechanisms of heat transport in nanofluids. Heat Transf Eng 30(14):1136–1150

    Article  Google Scholar 

  • Chein R, Chuang J (2007) Experimental microchannel heat sink performance studies using nanofluids. Int J Therm Sci 46(1):57–66

    Article  Google Scholar 

  • Chen G (1996) Nonlocal and nonequilibrium heat conduction in the vicinity of nanoparticles. ASME J Heat Transf 118(3):539–545

    Article  Google Scholar 

  • Chen H, Witharana S, Jin Y, Kim C, Ding Y (2009) Predicting thermal conductivity of liquid suspensions of nanoparticles (nanofluids) based on rheology. Particuology 7(2):151–157

    Article  Google Scholar 

  • Choi SUS (1995) Enhancing thermal conductivity of fluids with nanoparticles. ASME Fluids Eng Div (Publ) FED 231:99–105

    Google Scholar 

  • Choi SUS (2009) Nanofluids: from vision to reality through research. J Heat Transf 131(3):033106

    Article  Google Scholar 

  • Choi SUS, Zhang ZG, Yu W, Lockwood FE, Grulke EA (2001) Anomalous thermal conductivity enhancement in nanotube suspensions. Appl Phys Lett 79(14):2252–2254

    Article  Google Scholar 

  • Chon CH, Kihm KD (2005) Thermal conductivity enhancement of nanofluids by Brownian motion. ASME J Heat Transf 127(8):810

    Article  Google Scholar 

  • Chon CH, Kihm KD, Lee SP, Choi SUS (2005) Empirical correlation finding the role of temperature and particle size for nanofluid (Al2O3) thermal conductivity enhancement. Appl Phys Lett 87(15):153107

    Article  Google Scholar 

  • Chopkar M, Das PK, Manna I (2006) Synthesis and characterization of nanofluid for advanced heat transfer applications. Scr Mater 55(6):549–552

    Article  Google Scholar 

  • Chopkar M, Sudarshan S, Das PK, Manna I (2008) Effect of particle size on thermal conductivity of nanofluid. Metall Mater Trans A Phys Metall Mater Sci 39(7):1535–1542

    Article  Google Scholar 

  • Czarnetzki W, Roetzel W (1995) Temperature oscillation techniques for simultaneous measurement of thermal diffusivity and conductivity. Int J Thermophys 16(2):413–422

    Article  Google Scholar 

  • Das SK, Putra N, Thiesen P, Roetzel W (2003) Temperature dependence of thermal conductivity enhancement for nanofluids. ASME J Heat Transf 125(4):567–574

    Article  Google Scholar 

  • Ding Y, Alias H, Wen D, Williams RA (2006) Heat transfer of aqueous suspensions of carbon nanotubes (CNT nanofluids). Int J Heat Mass Transf 49(1–2):240–250

    Article  Google Scholar 

  • Domingues G, Volz S, Joulain K, Greffet JJ (2005) Heat transfer between two nanoparticles through near field interaction. Phys Rev Lett 94(8):085901

    Article  Google Scholar 

  • Eastman JA, Choi SUS, Li S, Yu W, Thompson LJ (2001) Anomalously increased effective thermal conductivities of ethylene glycol-based nanofluids containing copper nanoparticles. Appl Phys Lett 78(6):718–720

    Article  Google Scholar 

  • Einstein A (1906) A new determination of the molecular dimensions. Ann Phys 19(2):289–306

    Article  Google Scholar 

  • Einstein A (1956) Investigation on the theory of Brownian movement. Dover, New York

    Google Scholar 

  • Evans W, Fish J, Keblinski P (2006) Role of Brownian motion hydrodynamics on nanofluid thermal conductivity. Appl Phys Lett 88(9):093116

    Article  Google Scholar 

  • Evans W, Prasher R, Fish J, Meakin P, Phelan P, Keblinski P (2008) Effect of aggregation and interfacial thermal resistance on thermal conductivity of nanocomposites and colloidal nanofluids. Int J Heat Mass Transf 51(5–6):1431–1438

    Article  MATH  Google Scholar 

  • Feng Y, Yu B, Xu P, Zou M (2007) The effective thermal conductivity of nanofluids based on the nanolayer and the aggregation of nanoparticles. J Phys D Appl Phys 40(10):3164–3171

    Article  Google Scholar 

  • Geiger GH, Poirier DR (1973) Transport phenomena in metallurgy. Addison-Wesley, Reading, PA

    Google Scholar 

  • Hamilton RL, Crosser OK (1962) Thermal conductivity of heterogeneous two-component systems. Ind Eng Chem Fundam 1(3):187–191

    Article  Google Scholar 

  • Hasselman DPH, Johnson LF (1987) Effective thermal conductivity of composites with interfacial thermal barrier resistance. J Compos Mater 21(6):508–515

    Article  Google Scholar 

  • He Y, Jin Y, Chen H, Ding Y, Cang D, Lu H (2007) Heat transfer and flow behaviour of aqueous suspensions of TiO2 nanoparticles (nanofluids) flowing upward through a vertical pipe. Int J Heat Mass Transf 50(11–12):2272–2281

    Article  MATH  Google Scholar 

  • Hong T-K, Yang H-S, Choi CJ (2005) Study of the enhanced thermal conductivity of Fe nanofluids. J Appl Phys 97(6):1–4

    Google Scholar 

  • Hong KS, Hong T-K, Yang H-S (2006) Thermal conductivity of Fe nanofluids depending on the cluster size of nanoparticles. Appl Phys Lett 88(3):1–3

    Article  MathSciNet  Google Scholar 

  • Jang SP, Choi SUS (2004) Role of Brownian motion in the enhanced thermal conductivity of nanofluids. Appl Phys Lett 84(21):4316–4318

    Article  Google Scholar 

  • Ju YS, Kim J, Hung MT (2008) Experimental study of heat conduction in aqueous suspensions of aluminum oxide nanoparticles. J Heat Transf 130(9):092403

    Article  Google Scholar 

  • Kakaç S, Pramuanjaroenkij A (2009) Review of convective heat transfer enhancement with nanofluids. Int J Heat Mass Transf 52(13–14):3187–3196

    Article  MATH  Google Scholar 

  • Kakaç S, Yener Y (1994) Convective heat transfer, 2nd edn. CRC Press LLC, Boca Raton, FL

    Google Scholar 

  • Keblinski P, Phillpot SR, Choi SUS, Eastman JA (2002) Mechanisms of heat flow in suspensions of nano-sized particles (nanofluids). Int J Heat Mass Transf 45(4):855–863

    Article  MATH  Google Scholar 

  • Keblinski P, Prasher R, Eapen J (2008) Thermal conductance of nanofluids: is the controversy over? J Nanopart Res 10(7):1089–1097

    Article  Google Scholar 

  • Koo J, Kleinstreuer C (2004) A new thermal conductivity model for nanofluids. J Nanopart Res 6(6):577–588

    Article  Google Scholar 

  • Krieger IM, Dougherty TJ (1959) A mechanism for non-Newtonian flow in suspensions of rigid spheres. Trans Soc Rheol 3:137–152

    Article  Google Scholar 

  • Lee D (2007) Thermophysical properties of interfacial layer in nanofluids. Langmuir 23(11):6011–6018

    Article  Google Scholar 

  • Lee J, Mudawar I (2007) Assessment of the effectiveness of nanofluids for single-phase and two-phase heat transfer in micro-channels. Int J Heat Mass Transf 50(3–4):452–463

    Article  Google Scholar 

  • Lee S, Choi SUS, Li S, Eastman JA (1999) Measuring thermal conductivity of fluids containing oxide nanoparticles. ASME J Heat Transf 121(2):280–288

    Article  Google Scholar 

  • Leong KC, Yang C, Murshed SMS (2006) A model for the thermal conductivity of nanofluids—the effect of interfacial layer. J Nanopart Res 8(2):245–254

    Article  Google Scholar 

  • Li CH, Peterson GP (2006) Experimental investigation of temperature and volume fraction variations on the effective thermal conductivity of nanoparticle suspensions (nanofluids). J Appl Phys 99(8):1–8

    Google Scholar 

  • Li CH, Peterson GP (2007) Mixing effect on the enhancement of the effective thermal conductivity of nanoparticle suspensions (nanofluids). Int J Heat Mass Transf 50(23–24):4668–4677

    Article  MATH  Google Scholar 

  • Li Q, Xuan Y (2000) Experimental investigation on transport properties of nanofluids. In: Buxuan W (ed) Heat transfer science and technology 2000. Higher Education Press, Beijing, pp 757–762

    Google Scholar 

  • Li CH, Williams W, Buongiorno J, Hu LW, Peterson GP (2008a) Transient and steady-state experimental comparison study of effective thermal conductivity of Al2O3/water nanofluids. J Heat Transf 130(4):042407

    Article  Google Scholar 

  • Li YH, Qu W, Feng JC (2008b) Temperature dependence of thermal conductivity of nanofluids. Chin Phys Lett 25(9):3319–3322

    Article  Google Scholar 

  • Liu M-S, Lin MC-C, Huang I-T, Wang C-C (2005) Enhancement of thermal conductivity with carbon nanotube for nanofluids. Int Commun Heat Mass Transf 32(9):1202–1210

    Article  Google Scholar 

  • Masuda H, Ebata A, Teramae K, Hishinuma N (1993) Alteration of thermal conductivity and viscosity of liquid by dispersing ultra-fine particles (dispersion of γ-Al2O3, SiO2, and TiO2 ultra-fine particles). Netsu Bussei 4(4):227–233

    Google Scholar 

  • Maxwell JC (1873) A treatise on electricity and magnetism. Clarendon Press, Oxford

    Google Scholar 

  • Mintsa HA, Roy G, Nguyen CT, Doucet D (2009) New temperature dependent thermal conductivity data for water-based nanofluids. Int J Therm Sci 48(2):363–371

    Article  Google Scholar 

  • Murshed SMS, Leong KC, Yang C (2005) Enhanced thermal conductivity of TiO2-water based nanofluids. Int J Therm Sci 44(4):367–373

    Article  Google Scholar 

  • Murshed SMS, Leong KC, Yang C (2008a) Thermophysical and electrokinetic properties of nanofluids—a critical review. Appl Therm Eng 28(17–18):2109–2125

    Article  Google Scholar 

  • Murshed SMS, Leong KC, Yang C (2008b) Investigations of thermal conductivity and viscosity of nanofluids. Int J Therm Sci 47(5):560–568

    Article  Google Scholar 

  • Murshed SMS, Leong KC, Yang C (2008c) Characterization of electrokinetic properties of nanofluids. J Nanosci Nanotechnol 8(11):5966–5971

    Article  Google Scholar 

  • Nan C-W, Birringer R, Clarke DR, Gleiter H (1997) Effective thermal conductivity of particulate composites with interfacial thermal resistance. J Appl Phys 81(10):6692–6699

    Article  Google Scholar 

  • Nan C-W, Shi Z, Lin Y (2003) A simple model for thermal conductivity of carbon nanotube-based composites. Chem Phys Lett 375(5–6):666–669

    Article  Google Scholar 

  • Nie C, Marlow WH, Hassan YA (2008) Discussion of proposed mechanisms of thermal conductivity enhancement in nanofluids. Int J Heat Mass Transf 51(5–6):1342–1348

    Article  MATH  Google Scholar 

  • Nimtz G, Marquardt P, Gleiter H (1990) Size-induced metal-insulator transition in metals and semiconductors. J Cryst Growth 86(1–4):66–71

    Article  Google Scholar 

  • Oh D-W, Jain A, Eaton JK, Goodson KE, Lee JS (2008) Thermal conductivity measurement and sedimentation detection of aluminum oxide nanofluids by using the 3ω method. Int J Heat Fluid Flow 29(5):1456–1461

    Article  Google Scholar 

  • Patel HE, Sundararajan T, Das SK (2009) An experimental investigation into the thermal conductivity enhancement in oxide and metallic nanofluids. J Nanopart Res: 1–17. doi:10.1007/s11051-009-9658-2

  • Prasher R, Bhattacharya P, Phelan PE (2005) Thermal conductivity of nanoscale colloidal solutions (nanofluids). Phys Rev Lett 94(2):1–4

    Article  Google Scholar 

  • Prasher R, Phelan PE, Bhattacharya P (2006) Effect of aggregation kinetics on the thermal conductivity of nanoscale colloidal solutions (nanofluid). Nano Lett 6(7):1529–1534

    Article  Google Scholar 

  • Putnam SA, Cahill DG, Braun PV, Ge Z, Shimmin RG (2006) Thermal conductivity of nanoparticles suspensions. J Appl Phys 99(8):084308

    Article  Google Scholar 

  • Roy G, Nguyen CT, Doucet D, Suiro S, Maré T (2006) Temperature dependent thermal conductivity of alumina based nanofluids. In: Davis GV, Leonardi E (eds) Proceedings of 13th International Heat Transfer Conference. Begell House Inc, Redding, CT

  • Schwartz LM, Garboczi EJ, Bentz DP (1995) Interfacial transport in porous media: application to DC electrical conductivity of mortars. J Appl Phys 78(10):5898–5908

    Article  Google Scholar 

  • Sitprasert C, Dechaumphai P, Juntasaro V (2009) A thermal conductivity model for nanofluids including effect of the temperature-dependent interfacial layer. J Nanopart Res 11(6):1465–1476

    Article  Google Scholar 

  • Tillman P, Hill JM (2007) Determination of nanolayer thickness for a nanofluid. Int Commun Heat Mass Transf 34(4):399–407

    Article  Google Scholar 

  • Timofeeva EV, Routbort JL, Singh D (2009) Particle shape effects on thermophysical properties of alumina nanofluids. J Appl Phys 106(1):014304

    Article  Google Scholar 

  • Tomotika S, Aoi T, Yosinobu H (1953) On the forces acting on a circular cylinder set obliquely in a uniform stream at low values of Reynolds number. Proc R Soc Lond A Math Phys Sci 219:233–244

    Article  MATH  MathSciNet  Google Scholar 

  • Tsai TH, Kuo LS, Chen PH, Yang CT (2008) Effect of viscosity of base fluid on thermal conductivity of nanofluids. Appl Phys Lett 93(23):233121

    Article  Google Scholar 

  • Turgut A, Tavman I, Chirtoc M, Schuchmann HP, Sauter C, Tavman S (2009) Thermal conductivity and viscosity measurements of water-based TiO2 nanofluids. Int J Thermophys: 1–14. doi:10.1007/s10765-009-0594-2

  • Wang XQ, Mujumdar AS (2007) Heat transfer characteristics of nanofluids: a review. Int J Therm Sci 46(1):1–19

    Article  MATH  Google Scholar 

  • Wang X, Xu X, Choi SUS (1999) Thermal conductivity of nanoparticle–fluid mixture. J Thermophys Heat Transf 13(4):474–480

    Article  Google Scholar 

  • Wang B-X, Zhou L-P, Peng X-F (2003) A fractal model for predicting the effective thermal conductivity of liquid with suspension of nanoparticles. Int J Heat Mass Transf 46(14):2665–2672

    Article  MATH  Google Scholar 

  • Wang X, Zhu D, Yang S (2009) Investigation of pH and SDBS on enhancement of thermal conductivity in nanofluids. Chem Phys Lett 470(1–3):107–111

    Article  Google Scholar 

  • Wen D, Ding Y (2004) Experimental investigation into convective heat transfer of nanofluids at the entrance region under laminar flow conditions. Int J Heat Mass Transf 47(24):5181–5188

    Article  Google Scholar 

  • Wen D, Lin G, Vafaei S, Zhang K (2009) Review of nanofluids for heat transfer applications. Particuology 7:141–150

    Article  Google Scholar 

  • Xie H, Wang J, Xi T, Liu Y (2002a) Thermal conductivity of suspensions containing nanosized SiC particles. Int J Thermophys 23(2):571–580

    Article  Google Scholar 

  • Xie H, Wang J, Xi T, Liu Y, Ai F (2002b) Dependence of the thermal conductivity of nanoparticle–fluid mixture on the base fluid. J Mater Sci Lett 21(19):1469–1471

    Article  Google Scholar 

  • Xie H, Wang J, Xi T, Liu Y, Ai F, Wu Q (2002c) Thermal conductivity enhancement of suspensions containing nanosized alumina particles. J Appl Phys 91(7):4568–4572

    Article  Google Scholar 

  • Xie H, Fujii M, Zhang X (2005) Effect of interfacial nanolayer on the effective thermal conductivity of nanoparticle–fluid mixture. Int J Heat Mass Transf 48(14):2926–2932

    Article  Google Scholar 

  • Xu J, Yu B, Zou M, Xu P (2006) A new model for heat conduction of nanofluids based on fractal distributions of nanoparticles. J Phys D Appl Phys 39(20):4486–4490

    Article  Google Scholar 

  • Xuan Y, Li Q, Hu W (2003) Aggregation structure and thermal conductivity of nanofluids. AIChE J 49(4):1038–1043

    Article  Google Scholar 

  • Xue Q-Z (2003) Model for effective thermal conductivity of nanofluids. Phys Lett A Gen At Solid State Phys 307(5–6):313–317

    Google Scholar 

  • Xue Q, Xu W-M (2005) A model of thermal conductivity of nanofluids with interfacial shells. Mater Chem Phys 90(2–3):298–301

    Article  Google Scholar 

  • Xue L, Keblinski P, Phillpot SR, Choi SUS, Eastman JA (2004) Effect of liquid layering at the liquid–solid interface on thermal transport. Int J Heat Mass Transf 47(19–20):4277–4284

    Article  MATH  Google Scholar 

  • Yu W, Choi SUS (2003) The role of interfacial layers in the enhanced thermal conductivity of nanofluids: a renovated Maxwell model. J Nanopart Res 5(1–2):167–171

    Article  Google Scholar 

  • Yu W, Choi SUS (2004) The role of interfacial layers in the enhanced thermal conductivity of nanofluids: a renovated Hamilton–Crosser model. J Nanopart Res 6(4):355–361

    Article  MathSciNet  Google Scholar 

  • Yu C-J, Richter AG, Datta A, Durbin MK, Dutta P (1999) Observation of molecular layering in thin liquid films using X-ray reflectivity. Phys Rev Lett 82(2–11):2326–2329

    Article  Google Scholar 

  • Yu W, France DM, Routbort JL, Choi SUS (2008) Review and comparison of nanofluid thermal conductivity and heat transfer enhancements. Heat Transf Eng 29(5):432–460

    Article  Google Scholar 

  • Zhang X, Gu H, Fujii M (2006a) Effective thermal conductivity and thermal diffusivity of nanofluids containing spherical and cylindrical nanoparticles. J Appl Phys 100(4):1–5

    Google Scholar 

  • Zhang X, Gu H, Fujii M (2006b) Experimental study on the effective thermal conductivity and thermal diffusivity of nanofluids. Int J Thermophys 27(2):569–580

    Article  Google Scholar 

  • Zhou LP, Wang BX (2002) Experimental research on the thermophysical properties of nanoparticle suspensions using the quasi-steady state method. Ann Proc Chin Eng Thermophys, Shanghai: 889–892

  • Zhu H, Zhang C, Liu S, Tang Y, Yin Y (2006) Effects of nanoparticle clustering and alignment on thermal conductivities of Fe3O4 aqueous nanofluids. Appl Phys Lett 89(2):1–3

    Google Scholar 

  • Zhu HT, Zhang CY, Tang YM, Wang JX (2007) Novel synthesis and thermal conductivity of CuO nanofluid. J Phys Chem C 111(4):1646–1650

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sadık Kakaç.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Özerinç, S., Kakaç, S. & Yazıcıoğlu, A.G. Enhanced thermal conductivity of nanofluids: a state-of-the-art review. Microfluid Nanofluid 8, 145–170 (2010). https://doi.org/10.1007/s10404-009-0524-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10404-009-0524-4

Keywords

Navigation