Skip to main content
Log in

Human Lumbar Spine Creep during Cyclic and Static Flexion: Creep Rate, Biomechanics, and Facet Joint Capsule Strain

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

There is a high incidence of low back pain (LBP) associated with occupations requiring sustained and/or repetitive lumbar flexion (SLF and RLF, respectively), which cause creep of the viscoelastic tissues. The purpose of this study was to determine the effect of creep on lumbar biomechanics and facet joint capsule (FJC) strain. Specimens were flexed for 10 cycles, to a maximum 10 Nm moment at L5-S1, before, immediately after, and 20 min after a 20-min sustained flexion at the same moment magnitude. The creep rates of SLF and RLF were also measured during each phase and compared to the creep rate predicted by the moment relaxation rate function of the lumbar spine. Both SLF and RLF resulted in significantly increased intervertebral motion, as well as significantly increased FJC strains at the L3-4 to L5-S1 joint levels. These parameters remained increased after the 20-min recovery. Creep during SLF occurred significantly faster than creep during RLF. The moment relaxation rate function was able to accurately predict the creep rate of the lumbar spine at the single moment tested. The data suggest that SLF and RLF result in immediate and residual laxity of the joint and stretch of the FJC, which could increase the potential for LBP.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adams, M. A., and P. Dolan. Time-dependent changes in the lumbar spine’s resistance to bending. Clin. Biomech. (Bristol., Avon.) 11:194–200, 1996.

    Google Scholar 

  2. Bernard, B. P., and L. Fine. Musculoskeletal Disorders and Workplace Factors: Critical Review of Epidemiologic Evidence for Work-Related Musculoskeletal Disorders of the Neck, Upper Extremity, and Low Back, 2nd ed. Bethesda, MD: National Institute for Occupational Safety and Health, 1997.

    Google Scholar 

  3. Cavanaugh, J., A. Ozaktay, H. Yamashita, A. Avramov, T. Getchell, and A. King. Mechanisms of low back pain. Clin. Orthop. Relat. Res. 335:166–180, 1997.

    Google Scholar 

  4. Cavanaugh, J. M., A. C. Ozaktay, H. T. Yamashita, and A. I. King. Lumbar facet pain: Biomechanics, neuroanatomy and neurophysiology. J. Biomech. 29:1117–1129, 1996.

    Google Scholar 

  5. Chimich, D., N. Shrive, C. Frank, L. Marchuk, and R. Bray. Water content alters viscoelastic behaviour of the normal adolescent rabbit medial collateral ligament. J. Biomech. 25:831–837, 1992.

    Google Scholar 

  6. Claude, L. N., M. Solomonow, B. H. Zhou, R. V. Baratta, and M. P. Zhu. Neuromuscular dysfunction elicited by cyclic lumbar flexion. Muscle Nerve 27:348–358, 2003.

    Google Scholar 

  7. Findly, W. N., J. W. Lai, and K. Onaran. Creep and Relaxation of Nonlinear Viscoelastic Mateirals, with an Introduction of Linear Viscoelasticity. Amsterdam: North Holland, 1976.

    Google Scholar 

  8. Fung, Y. Biomechanics: Mechanical Properties of Living Tissues, 2nd ed. New York: Springer-Verlag, 1993.

    Google Scholar 

  9. Gardner-Morse, M. G., and I. A. Stokes. The effects of abdominal muscle coactivation on lumbar spine stability. Spine 23:86–91, 1998.

    Article  CAS  PubMed  Google Scholar 

  10. Gedalia, U., M. Solomonow, B. H. Zhou, R. V. Baratta, Y. Lu, and M. Harris. Biomechanics of increased exposure to lumbar injury caused by cyclic loading. Part 2. Recovery of reflexive muscular stability with rest. Spine 24:2461–2467, 1999.

    Google Scholar 

  11. Granata, K. P., and W. S. Marras. The influence of trunk muscle coactivity on dynamic spinal loads. Spine 20:913–919, 1995.

    Google Scholar 

  12. Hingorani, R. V., P. P. Provenzano, R. S. Lakes, A. Escarcega, and R. Vanderby, Jr. Nonlinear viscoelasticity in rabbit medial collateral ligament. Ann. Biomed. Eng. 32:306–312, 2004.

    Google Scholar 

  13. Hoffman, A. H., and P. Grigg. A method for measuring strains in soft tissue. J. Biomech. 17:795–800, 1984.

    Google Scholar 

  14. Ianuzzi, A., J. S. Little, J. B. Chiu, A. Baitner, G. Kawchuk, and P. S. Khalsa. Human lumbar facet joint capsule strains: I. During physiological motions. Spine J. 4:141–152, 2004.

    Google Scholar 

  15. Johannessen, W., E. J. Vresilovic, A. C. Wright, and D. M. Elliott. Intervertebral disc mechanics are restored following cyclic loading and unloaded recovery. Ann. Biomed. Eng. 32:70–76, 2004.

    Google Scholar 

  16. Kang, Y. M., W. S. Choi, and J. G. Pickar. Electrophysiologic evidence for an intersegmental reflex pathway between lumbar paraspinal tissues. Spine 27:E56–E63, 2002.

    Google Scholar 

  17. Keller, T. S., T. H. Hansson, S. H. Holm, M. M. Pope, and D. M. Spengler. In vivo creep behavior of the normal and degenerated porcine intervertebral disk: A preliminary report. J. Spinal Disord. 1:267–278, 1988.

    Google Scholar 

  18. Keller, T. S., S. H. Holm, T. H. Hansson, and D. M. Spengler. Volvo Award in experimental studies. The dependence of intervertebral disc mechanical properties on physiologic conditions. Spine 15:751–761, 1990.

    Google Scholar 

  19. Keller, T. S., D. M. Spengler, and T. H. Hansson. Mechanical behavior of the human lumbar spine. I. Creep analysis during static compressive loading. J. Orthop. Res. 5:467–478, 1987.

    Google Scholar 

  20. Koeller, W., S. Muehlhaus, W. Meier, and F. Hartmann. Biomechanical properties of human intervertebral discs subjected to axial dynamic compression–influence of age and degeneration. J. Biomech. 19:807–816, 1986.

    Google Scholar 

  21. Lakes, R. S., and R. Vanderby. Interrelation of creep and relaxation: A modeling approach for ligaments. J. Biomech. Eng. 121:612–615, 1999.

    Google Scholar 

  22. Little, J. S., A. Ianuzzi, J. B. Chiu, A. Baitner, and P. S. Khalsa. Human lumbar facet joint capsule strains: II. Alteration of strains subsequent to anterior interbody fixation. Spine J. 4:153–162, 2004.

    Google Scholar 

  23. Little, J. S., and P. S. Khalsa. Material properties of the human lumbar facet joint capsule. J. Biomech. Eng, 127:1–10, 2005.

    Google Scholar 

  24. Lu, D., M. Solomonow, B. Zhou, R. V. Baratta, and L. Li. Frequency-dependent changes in neuromuscular responses to cyclic lumbar flexion. J. Biomech. 37:845–855, 2004.

    Google Scholar 

  25. McGill, S. M., and S. Brown. Creep response of the lumbar spine to prolonged full flexion. Clin. Biomech. 7:43–46, 1992.

    Google Scholar 

  26. McLain, R. F., and J. G. Pickar. Mechanoreceptor endings in human thoracic and lumbar facet joints. Spine 23:168–173, 1998.

    Article  CAS  PubMed  Google Scholar 

  27. Oliver, M. J., and L. T. Twomey. Extension creep in the lumbar spine. Clin. Biomech. (Bristol., Avon.) 10:363–368, 1995.

    Google Scholar 

  28. Panjabi, M. M., M. Krag, D. Summers, and T. Videman. Biomechanical time-tolerance of fresh cadaveric human spine specimens. J. Orthop. Res. 3:292–300, 1985.

    Google Scholar 

  29. Provenzano, P. P., R. S. Lakes, D. T. Corr, and R. R. Vanderby, Jr. Application of nonlinear viscoelastic models to describe ligament behavior. Biomech. Model. Mechanobiol. 1:45–57, 2002.

    Google Scholar 

  30. Provenzano, P., R. Lakes, T. Keenan, and R. Vanderby, Jr. Nonlinear ligament viscoelasticity. Ann. Biomed. Eng. 29:908–914, 2001.

    Google Scholar 

  31. Race, A., N. D. Broom, and P. Robertson. Effect of loading rate and hydration on the mechanical properties of the disc. Spine 25:662–669, 2000.

    Article  CAS  PubMed  Google Scholar 

  32. Soderkvist, I., and P. A. Wedin. Determining the movements of the skeleton using well-configured markers. J. Biomech. 26:1473–1477, 1993.

    Google Scholar 

  33. Solomonow, M., R. V. Baratta, A. Banks, C. Freudenberger, and B. H. Zhou. Flexion-relaxation response to static lumbar flexion in males and females. Clin. Biomech. (Bristol., Avon.). 18:273–279, 2003.

    Google Scholar 

  34. Solomonow, M., R. V. Baratta, B. H. Zhou, E. Burger, A. Zieske, and A. Gedalia. Muscular dysfunction elicited by creep of lumbar viscoelastic tissue. J. Electromyogr. Kinesiol. 13:381–396, 2003.

    Google Scholar 

  35. Solomonow, M., Z. B. He, R. V. Baratta, Y. Lu, M. Zhu, and M. Harris. Biexponential recovery model of lumbar viscoelastic laxity and reflexive muscular activity after prolonged cyclic loading. Clin. Biomech. (Bristol., Avon.) 15:167–175, 2000.

    Google Scholar 

  36. Solomonow, M., B. H. Zhou, R. V. Baratta, Y. Lu, and M. Harris. Biomechanics of increased exposure to lumbar injury caused by cyclic loading: Part 1. Loss of reflexive muscular stabilization. Spine 24:2426–2434, 1999.

    Article  CAS  PubMed  Google Scholar 

  37. Thornton, G. M., A. Oliynyk, C. B. Frank, and N. G. Shrive. Ligament creep cannot be predicted from stress relaxation at low stress: A biomechanical study of the rabbit medial collateral ligament. J. Orthop. Res. 15:652–656, 1997.

    Google Scholar 

  38. Thornton, G. M., N. G. Shrive, and C. B. Frank. Ligament creep recruits fibres at low stresses and can lead to modulus-reducing fibre damage at higher creep stresses: A study in rabbit medial collateral ligament model. J. Orthop. Res. 20:967–974, 2002.

    Google Scholar 

  39. Twomey, L., and J. Taylor. Flexion creep deformation and hysteresis in the lumbar vertebral column. Spine 7:116–122, 1982.

    Google Scholar 

  40. White, A., and M. M. Panjabi. Clinical Biomechanics of the Spine, 2nd ed. Philadelphia: Lippincott, 1990.

    Google Scholar 

  41. Williams, M., M. Solomonow, B. H. Zhou, R. V. Baratta, and M. Harris. Multifidus spasms elicited by prolonged lumbar flexion. Spine 25:2916–2924, 2000.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Partap S. Khalsa DC, PhD.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Little, J.S., Khalsa, P.S. Human Lumbar Spine Creep during Cyclic and Static Flexion: Creep Rate, Biomechanics, and Facet Joint Capsule Strain. Ann Biomed Eng 33, 391–401 (2005). https://doi.org/10.1007/s10439-005-1742-x

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-005-1742-x

Keyword

Navigation