Skip to main content
Log in

A Theoretical Model for the Margination of Particles within Blood Vessels

Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

The margination of a particle circulating in the blood stream has been analyzed. The contribution of buoyancy, hemodynamic forces, van der Waals, electrostatic and steric interactions between the circulating particle and the endothelium lining the vasculature has been considered. For practical applications, the contribution of buoyancy, hemodynamic forces and van der Waals interactions should be only taken into account, whilst the effect of electrostatic and steric repulsion becomes important only at very short distances from the endothelium (1–10 nm). The margination speed and the time for margination t s have been estimated as a function of the density of the particle relative to blood Δ ρ, the Hamaker constant A and radius R of the particle. A critical radius R c exists for which the margination time t s has a maximum, which is influenced by both Δ ρ and A: the critical radius decreases as the relative density increases and the Hamaker constant decreases. Therefore, particles used for drug delivery should have a radius smaller than the critical value (in the range of 100 nm) to facilitate margination and interaction with the endothelium. While particles used as nanoharvesting agents in proteomics or genomics analysis should have a radius close to the critical value to minimize margination and increase their circulation time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

References

  1. Becker, F. F., X.-B. Wang, Y. Huang, R. Pethig, J. Vykoukal, and P. R. C. Gascoyne. The removal of human leukemia cells from blood using interdigitated microelectrodes. J. Phys. D: Appl. Phys. 27:2659–2662, 1994.

    Article  Google Scholar 

  2. Bhushan, B. Springer Handbook of Nanotechnology, Heidelburg, Germany: Springer-Verlag, 2004.

    Google Scholar 

  3. Bhushan, B. Introduction to Tribology, New York: Wiley, 2002.

    Google Scholar 

  4. Bhushan, B. Handbook of Micro/NanoTribology, 2nd ed. Boca Raton, Florida: CRC Press, 1999.

    Google Scholar 

  5. Chaudhary, S. S., R. K. Mishra, A. Swarup, and J. M. Thomas. Dielectric-properties of normal and malignant human-breast tissues at radiowave and microwave frequencies. Indian J. Biochem. Biophys. 21(1):76–79, 1984.

    Google Scholar 

  6. Cohen, H. Sustained drug delivery and expression of DNA encapsulated in polymeric nanoparticles. Gene Ther. 7–1896, 2000.

    Article  Google Scholar 

  7. Cooper, G. M. The Cell – A Molecular Approach, 2nd ed.Sunderland, Massachusetts: Sinauer Associates, Inc., 2000.

    Google Scholar 

  8. Decuzzi, P., S. Lee, M. Decuzzi, and M. Ferrari. Adhesion of microfabricated particles on vascular endothelium: A parametric analysis. Ann. Biomed. Eng. 32(6):793–802, 2004.

    Article  Google Scholar 

  9. Dellian, M., F. Yuan, V. S. Trubetskoy, V. P. Torchilin, and R. K. Jain. Vascular permeability in a human tumor xenograft: Molecular charge dependence. Br. J. Cancer 82:1513–1518 2000.

    Article  Google Scholar 

  10. Duncan, R. The dawning era of polymer therapeutics. Nat. Rev. Drug Discov. 2(5):347–360, 2003.

    Article  Google Scholar 

  11. Ferrari, M. Therapeutic Microdevices and Methods of Making and Using Same. U.S. Patent No. 6, 107, 102, 2000.

  12. Ferrari, M., and J. Liu. The engineered course of treatment. Mech. Eng. 44–47, 2001.

  13. Gabriel, C., S. Gabriel, and E. Corthout. The dielectric properties of biological tissues: I. Literature survey. Phys. Med. Biol. 41(11):2231–2249, 1996.

    Article  Google Scholar 

  14. Gabriel, S., R. W. Lau, and C. Gabriel. The dielectric properties of biological tissues: II. Measurements in the frequency range 10 Hz to 20 GHz. Phys. Med. Biol. 41(11):2251–2269, 1996.

    Article  Google Scholar 

  15. Ganong, W. F. Review of Medical Physiology, 21st ed. New York: Lange Medical Books/McGraw-Hill Medical Publishing Division, 2003.

    Google Scholar 

  16. Holmberg, A.Ion exchange tumor targeting (IETT). United States Patent 6, 569, 841, 2003.

    Google Scholar 

  17. Israelachvili, J. Intermolecular and Surface Forces, 2nd ed. New York: Academic Press, 1992.

    Google Scholar 

  18. Jain, R. K. Transport of molecules, particles, and cells in solid tumors. Annu. Rev. Biomed. Eng. 01:241–263, 1999.

    Article  Google Scholar 

  19. Juliano, R. L., and D. Stamp, Effect of particle size and charge on the clearance rates of liposomes and liposome encapsulated drugs. Biochem. Biophys. Res. Commun. 63(3):651–658, 1975.

    Google Scholar 

  20. LaVan, D., T. McGuire, and R. Langer. Small-scale systems for in vivo drug delivery. Nat. Biotechnol. 21(10):1184, 2003.

    Article  Google Scholar 

  21. Liotta, L. A., M. Ferrari, and E. Petricoin. Clinical proteomics: Written in blood. Nature 425:905, 2003.

    Article  Google Scholar 

  22. Martin, F. J., and C. Grove. Microfabricated drug delivery systems: Concepts to improve clinical benefits. Biomed. Microdevices 3:97–108, 2001.

    Article  Google Scholar 

  23. Netti, P. A., T. B. Laurence, Y. Boucher, R. Skalak, and R. K. Jain. Time-dependent behavior of interstitial fluid pressure in solid tumors: Implications for drug delivery. Cancer Res. 55:5451–5458, 1995.

    Google Scholar 

  24. Patri, A. K., I. J. Majoros, and J. R. Baker. Dendritic polymer macromolecular carriers for drug delivery. Curr. Opin. Chem. Biol. 6(4):466–471, 2002.

    Article  Google Scholar 

  25. Pierres, A., A. M. Benoliel, C. Zhu, and P. Bongrand. Diffusion of microspheres in shear flow near a wall: Use to measure binding rates between attached molecules. Biophys. J. 81(1):25–42, 2001.

    Google Scholar 

  26. Raghumand, N., X. He, R. van Sluis, B. Mahoney, B. Baggett, C. W. Taylor, G. Paine-Murrieta, D. Roe, Z. M. Bhujwalla, and R. J. Gillies. Enhancement of chemotherapy by manipulation of tumor pH. Br. J. Cancer 80:1005–1011, 1999.

    Article  Google Scholar 

  27. Rosol, T. J., and C. C. Capen. Biology of disease. Mechanisms of cancer-induced hypercalcemia. Lab. Invest. 67(6):680–702, 1992.

    Google Scholar 

  28. Schirier, W. Renal and Electrolyte Disorders. Philadelphia:Lippincott, Williams and Wilkins, 2003.

    Google Scholar 

  29. Senior, J., J. C. Crawley, and G. Gregoriadis. Tissue distribution of liposomes exhibiting long half-lives in the circulation after intravenous injection. Biochimica et Biophysica Acta 839(1):1–8, 1985.

    Google Scholar 

  30. Tokuyama, M., and I. Oppenheim. Dynamics of hard-sphere suspensions. Phys. Rev. E 50(1):R16–R19, 1994.

    Article  Google Scholar 

  31. Yang, J., Y. Huang, X.-B. Wang, F. F. Becker, and P. R. C. Gascoyne. Differential analysis of human leukocytes by dielectrophoretic field-flow-fractionation. Biophys. J. 78(5):2680–2689, 2000.

    Google Scholar 

  32. Wang, X.-B., Y. Huang, F. F. Becker, and P. R. C. Gascoyne. Non-uniform spatial distributions of both the magnitude and phase of AC electric fields determine dielectrophoretic forces. Biochimica et Biophysica Acta 1243(2):185–194, 1995.

    Google Scholar 

  33. Zhao, Y. H., S. Chien, and S. Weinbaum. Dynamic contact forces on leukocyte microvilli and their penetration of the endothelial glycocalyx. Biophys. J. 80(3):1124–1140, 2001.

    Article  Google Scholar 

  34. Zou, Y., and Z. Guo. A review of electrical impedance techniques for breast cancer detection. Med. Eng. Phys. 25(2):79–90,2003.

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Decuzzi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Decuzzi, P., Lee, S., Bhushan, B. et al. A Theoretical Model for the Margination of Particles within Blood Vessels. Ann Biomed Eng 33, 179–190 (2005). https://doi.org/10.1007/s10439-005-8976-5

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-005-8976-5

Keywords

Navigation