Skip to main content
Log in

Modeling of Sound Transmission from Ear Canal to Cochlea

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

A 3-D finite element (FE) model of the human ear consisting of the external ear canal, middle ear, and cochlea is reported in this paper. The acoustic-structure-fluid coupled FE analysis was conducted on the model which included the air in the ear canal and middle ear cavity, the fluid in the cochlea, and the middle ear and cochlea structures (i.e., bones and soft tissues). The middle ear transfer function such as the movements of tympanic membrane, stapes footplate, and round window, the sound pressure gain across the middle ear, and the cochlear input impedance in response to sound stimulus applied in the ear canal were derived and compared with the published experimental measurements in human temporal bones. The frequency sensitivity of the basilar membrane motion and intracochlear pressure induced by sound pressure in the ear canal was predicted along the length of the basilar membrane from the basal turn to the apex. The satisfactory agreements between the model and experimental data in the literature indicate that the middle ear function was well simulated by the model and the simplified cochlea was able to correlate sound stimulus in the ear canal with vibration of the basilar membrane and pressure variation of the cochlear fluid. This study is the first step toward the development of a comprehensive FE model of the entire human ear for acoustic-mechanical analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Fig. 10
Figure 11
Figure 12

Similar content being viewed by others

References

  1. Aibara R. J., J. T. Welsh, S. Puria, R. L. Goode 2001 Human middle-ear sound transfer function and cochlear impedance. Hear. Res. 152:100–109

    Article  PubMed  CAS  Google Scholar 

  2. Andoh M., H. Wada 2004 Prediction of the characteristics of two types of pressure waves in the cochlea: Theoretical considerations. J. Acoust. Soc. Am. 116, 417–425

    Article  PubMed  Google Scholar 

  3. Böhnke F., W. Arnold 1999 3D-finite element model of the human cochlea including fluid-structure couplings. ORL. 61, 305–310

    Article  PubMed  Google Scholar 

  4. Böhnke F., W. Arnold 2006 Bone conduction in a three-dimensional model of the cochlea. ORL. 68, 393–396

    Article  PubMed  Google Scholar 

  5. Dancer A., R. Franke 1980 Intracochlear sound pressure measurements in guinea pigs. Hear. Res. 2, 191–205

    Article  PubMed  CAS  Google Scholar 

  6. de Boer E. 1983 On active and passive cochlear models-toward a generalized analysis. J. Acoust. Soc. Am. 73, 574–576

    Article  PubMed  Google Scholar 

  7. Emadi G., C. P. Richter, P. Dallos. 2003 Stiffness of the gerbil basilar membrane: Radial and longitudinal variations. J. Neurophysiol. 91, 474–488

    Article  PubMed  Google Scholar 

  8. Gan R. Z., B. Feng, Q. Sun 2004 Three-dimensional finite element modeling of human ear for sound transmission. Ann. Biomed. Eng. 32, 847–859

    Article  PubMed  Google Scholar 

  9. Gan R. Z., Q. Sun, B. Feng, M. W. Wood 2006 Acoustical-structural coupled finite element analysis for sound transmission in human ear-pressure distributions. Med. Eng. Phys. 28, 395–404

    Article  PubMed  Google Scholar 

  10. Gan, R. Z., T. Cheng, D. Nakmali, and M. W. Wood. Effects of middle ear suspensory ligaments on acoustic-mechanical transmission in human ear. 4th Volume of Middle Ear Mechanics in Research and Otology, Zurich, Switzerland, pp. 216–222, 2007

  11. Hudde H., C. Weistenhofer 1997 A three-dimensional circuit model of the middle ear. Acustica United with Acta Acustica 83, 535–549

    Google Scholar 

  12. Hüttenbrink K. B., H. Hudde 1994 Untersuchungen zur schalleitung durch das rekonstruierte mittelohr mit einem hydrophone. HNO 42, 49–57

    PubMed  Google Scholar 

  13. Koike T., H. Wada 2002 Modeling of the human middle ear using the finite-element method. J. Acoust. Soc. Am. 111, 1306–1317

    Article  PubMed  Google Scholar 

  14. Kolston P. J., J. F. Ashmore 1996 Finite element micromechanical modeling of the cochlea in three dimensions. J. Acoust. Soc. Am. 99, 455–467

    Article  PubMed  CAS  Google Scholar 

  15. Kringlebotn M. 1988 Network model for the human middle ear. Scan Audio. 17, 75–85

    CAS  Google Scholar 

  16. Lechner T. P. 1993 A hydromechanical model of the cochlea with nonlinear feedback using PVF2 bending transducers. Hear. Res. 66, 202–212

    Article  PubMed  CAS  Google Scholar 

  17. Lim K. M., C. R. Steele 2002 A three-dimensional nonlinear active cochlear model analyzed by the WKB-numeric method. Hear. Res. 170, 190–205

    Article  PubMed  Google Scholar 

  18. Merchant S. N., M. E. Ravicz, J. J. Rosowski 1996 Acoustic input impedance of the stapes and cochlea in human temporal bones. Hear. Res. 97, 30–45

    Article  PubMed  CAS  Google Scholar 

  19. Naidu R. C., D. C. Mountain 2000 Longitudinal coupling within the basilar membrane, recticular liminae; In Wada H., Takasaka T., Ikeda K., Ohyama K., Koike T. (Eds) Recent Developments in Auditory Mechanics (pp. 123–129). Teaneck, World Scientific

    Google Scholar 

  20. Nedzelnisky V. 1980 Sound pressures in the basal turn of the cat cochlea. J. Acoust. Soc. Am. 68, 1676–1689

    Article  Google Scholar 

  21. Neely S. T. 1981 Finite difference solution of a two-dimensional mathematical model of the cochlea. J. Acoust. Soc. Am. 69, 1386–1393

    Article  PubMed  CAS  Google Scholar 

  22. Olson E. S. 1999 Direct measurement of intracochlear pressure waves. Nature (London) 402, 526–529

    Article  CAS  Google Scholar 

  23. Olson E. S. 2001 Intracochlear pressure measurements related to cochlear tuning. J. Acoust. Soc. Am. 110, 349–367

    Article  PubMed  CAS  Google Scholar 

  24. Puria S., W. T. Peake, J. J. Rosowski 1997 Sound-pressure measurements in the cochlea vestibule of human cadaver ears. J. Acoust. Soc. Am. 101, 2754–2770

    Article  PubMed  CAS  Google Scholar 

  25. Ren T. 2002 Longitudinal pattern of basilar membrane vibration in the sensitive cochlea. Proc. Natl. Acad. Sci. U.S.A. 99, 17101–17106

    Article  PubMed  CAS  Google Scholar 

  26. Ren T., A. L. Nuttall. 2001 Basilar membrane vibration in the basal turn of the sensitive gerbil cochlea. Hear. Res. 151, 48–60

    Article  PubMed  CAS  Google Scholar 

  27. Steele C. R. 1999 Toward three-dimensional analysis of cochlear structure. ORL. 61, 238–251

    Article  PubMed  CAS  Google Scholar 

  28. Steel C. R., K.-M. Lim 1999 Cochlear model with three-dimensional fluid, inner sulcus and food-forward mechanism. Audiol. Neuro-Otol. 4, 197–203

    Article  Google Scholar 

  29. Teudt, I., S. McCusker, and C.-P. Richter. Basilar membrane and tectorial membrane stiffness in CBA/Caj mice. ARO—Midwinter meeting, 30, #497, 2007

  30. Ulfendahl M. 1997 Mechanical responses of the mammalian cochlea. Prog. Neurobiol., 53, 331–380

    Article  PubMed  CAS  Google Scholar 

  31. Voie, A. H., E. A. Saxon, and M. J. Hess. Three dimensional analysis of the human cochlea. ARO—Midwinter meeting, 29, #357. 2006

  32. von Békésy, G. 1960 Experiments in Hearing. New York: McGraw-Hill Book Company, Inc

    Google Scholar 

  33. Voss S. E., J. J. Rosowski, S. N. Merchant, W. T. Peake 2000 Acoustic responses of the human ear. Hear. Res. 150, 43–69

    Article  PubMed  CAS  Google Scholar 

  34. Watts L. 2000 The mode-coupling Liouville-Green approximation for a two-dimensional cochlear model. J. Acoust. Soc. Am. 108, 2266–2271

    Article  PubMed  CAS  Google Scholar 

  35. White R. D., K. Grost 2005 Microengineered hydromechanical cochlear model. Proc. Natl. Acad. Sci. U.S.A. .102, 1296–1301

    Article  PubMed  Google Scholar 

  36. Wittbrodt M. J., C. R. Steele, S. Puria 2006 Developing a physical model of the human cochlea using microfabrication methods. Audiol Neurotol. 11, 104–112

    Article  Google Scholar 

  37. Zhou G., L. Bintz, D.Z. Anderson, K.E. Bright 1993 A life-sized physical model of the human cochlea with optical holographic readout. J. Acoust. Soc. Am. 93, 1516–1523

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgment

This work was supported by NIH/NIDCD R01DC006632 and NSF/CMS 0510563 Grants.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rong Z. Gan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gan, R.Z., Reeves, B.P. & Wang, X. Modeling of Sound Transmission from Ear Canal to Cochlea. Ann Biomed Eng 35, 2180–2195 (2007). https://doi.org/10.1007/s10439-007-9366-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-007-9366-y

Keywords

Navigation