Skip to main content
Log in

Effects of Autoregulation and CO2 Reactivity on Cerebral Oxygen Transport

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Both autoregulation and CO2 reactivity are known to have significant effects on cerebral blood flow and thus on the transport of oxygen through the vasculature. In this paper, a previous model of the autoregulation of blood flow in the cerebral vasculature is expanded to include the dynamic behavior of oxygen transport through binding with hemoglobin. The model is used to predict the transfer functions for both oxyhemoglobin and deoxyhemoglobin in response to fluctuations in arterial blood pressure and arterial CO2 concentration. It is shown that only six additional nondimensional groups are required in addition to the five that were previously found to characterize the cerebral blood flow response. A resonant frequency in the pressure-oxyhemoglobin transfer function is found to occur in the region of 0.1 Hz, which is a frequency of considerable physiological interest. The model predictions are compared with results from the published literature of phase angle at this frequency, showing that the effects of changes in breathing rate can significantly alter the inferred phase dynamics between blood pressure and hemoglobin. The question of whether dynamic cerebral autoregulation is affected under conditions of stenosis or stroke is then examined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Dawson, S. L., M. J. Blake, R. B. Panerai, and J. F. Potter. Dynamic but not static cerebral autoregulation is impaired in acute ischaemic stroke. Cerebrovasc. Dis. 10:126–132, 2000.

    Article  PubMed  CAS  Google Scholar 

  2. Eames, P. J., M. J. Blake, S. L. Dawson, R. B. Panerai, and J. F. Potter. Dynamic cerebral autoregulation and beat to beat blood pressure control are impaired in acute ischaemic stroke. J. Neurol. Neurosurg. Psychiatry 72:467–472, 2002.

    PubMed  CAS  Google Scholar 

  3. Elwell, C. E., M. Cope, A. D. Edwards, J. S. Wyatt, D. T. Delpy, and E. O. R. Reynolds. Identification of adult cerebral hemodynamics by near-infrared spectroscopy. J. Appl. Physiol. 77:2753–2760, 1994.

    PubMed  CAS  Google Scholar 

  4. Grubb, R. L., M. E. Raichle, J. O. Eichling, and M. M. Ter-Pogossian. The effects of changes in PaCO2 on cerebral volume, blood flow and vascular mean transit time. Stroke 5:630, 1974.

    PubMed  Google Scholar 

  5. Mitsis, G. D., and V. Z. Marmarelis. Modeling of nonlinear physiological systems with fast and slow dynamics: I. Methodology. Ann. Biomed. Eng. 30:272–281, 2002.

    Article  PubMed  CAS  Google Scholar 

  6. Mitsis, G. D., R. Zhang, B. D. Levine, and V. Z. Marmarelis. Modeling of nonlinear physiological systems with fast and slow dynamics: II. Application to cerebral autoregulation. Ann. Biomed. Eng. 30:555–565, 2002.

    Article  PubMed  CAS  Google Scholar 

  7. Nilsson, H., and H. Aalkjaer. Vasomotion: mechanisms and physiological importance. Mol. Interv. 3:79–89, 2003.

    Article  PubMed  CAS  Google Scholar 

  8. Panerai, R. B. System identification of human cerebral blood flow regulatory mechanisms. Cardiovasc. Eng. 4:59–71, 2004.

    Article  Google Scholar 

  9. Panerai, R. B., S. L. Dawson, and J. F. Potter. Linear and nonlinear analysis of human dynamic cerebral autoregulation. Am. J. Physiol. 277:H1089–H1099, 1999.

    PubMed  CAS  Google Scholar 

  10. Panerai, R. B., D. M. Simpson, S. T. Deverson, P. Mahony, P. Hayes, and D. H. Evans. Multivariate dynamic analysis of cerebral blood flow regulation in humans. IEEE Trans. Biomed. Eng. 47:419–423, 2000.

    Article  PubMed  CAS  Google Scholar 

  11. Payne, S. J. A model of the interaction between autoregulation and neural activation in the brain. Math. Biosci. 204:260–281, 2006.

    Article  PubMed  CAS  Google Scholar 

  12. Payne, S. J., and L. Tarassenko. Combined transfer function analysis and modelling of cerebral autoregulation. Ann. Biomed. Eng. 34:847–858, 2006.

    Article  PubMed  CAS  Google Scholar 

  13. Peng, T., A. B. Rowley, P. N. Ainslie, M. J. Poulin, and S. J. Payne. Multivariate system identification for cerebral autoregulation. Ann. Biomed. Eng. 36:308–320, 2008.

    Article  PubMed  Google Scholar 

  14. Peng, T., A. B. Rowley, P. N. Ainslie, M. J. Poulin, and S. J. Payne. Wavelet phase synchronization analysis of cerebral blood flow autoregulation. IEEE Trans. Biomed. Eng., in press

  15. Reinhard, M., T. Muller, B. Guschlbauer, J. Timmer, and A. Hetzel. Transfer function analysis for clinical evaluation of dynamic cerebral autoregulation—a comparison between spontaneous and respiratory-induced oscillations. Physiol. Meas. 24:27–43, 2003.

    Article  PubMed  CAS  Google Scholar 

  16. Reinhard, M., M. Roth, B. Guschlbauer, A. Harloff, J. Timmer, M. Czosnyka, and A. Hetzel. Dynamic cerebral autoregulation in acute ischemic stroke assessed from spontaneous blood pressure fluctuations. Stroke 36:1684–1689, 2005.

    Article  PubMed  CAS  Google Scholar 

  17. Reinhard, M., M. Roth, T. Muller, B. Guschlbauer, J. Timmer, M. Czosnyka, and A. Hetzel. Effect of carotid endarterectomy or stenting on impairment of dynamic cerebral autoregulation. Stroke 35:1381–1387, 2004.

    Article  PubMed  CAS  Google Scholar 

  18. Reinhard, M., E. Wehrle-Wieland, D. Grabiak, M. Roth, B. Guschlbauer, J. Timmer, C. Weiller, and A. Hetzel. Oscillatory cerebral hemodynamics—the macro- vs. microvascular level. J. Neurol. Sci. 250:103–109, 2006.

    Article  PubMed  Google Scholar 

  19. Reivich, M. Arterial PCO2 and cerebral hemodynamics. Am. J. Physiol. 206:25–35, 1964.

    PubMed  CAS  Google Scholar 

  20. Tiecks, F. P., A. M. Lam, R. Aaslid, and D. W. Newell. Comparison of static and dynamic cerebral autoregulatory measurements. Stroke 26:1014–1019, 1995.

    PubMed  CAS  Google Scholar 

  21. Ursino, M., A. Ter Minassian, C. A. Lodi, and L. Beydon. Cerebral hemodynamics during arterial and CO2 pressure changes: in vivo prediction by a mathematical model. Am. J. Physiol. 279:H2439–H2455, 2000.

    CAS  Google Scholar 

  22. Vespa, P. What is the optimal threshold for cerebral perfusion pressure following traumatic brain injury? Neurosurg Focus 15(6):E4, 2003.

    Article  PubMed  Google Scholar 

  23. Zhang, R., J. H. Zuckerman, C. A. Giller, and B. D. Levine. Transfer function analysis of dynamic cerebral autoregulation in humans. Am. J. Physiol. 274:H233–H241, 1998.

    PubMed  CAS  Google Scholar 

  24. Zhang, R., J. H. Zuckerman, and B. D. Levine. Spontaneous fluctuations in cerebral blood flow: insights from extended duration recordings in humans. Am. J. Physiol. 278:H1848–H1855, 2000.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. J. Payne.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Payne, S.J., Selb, J. & Boas, D.A. Effects of Autoregulation and CO2 Reactivity on Cerebral Oxygen Transport. Ann Biomed Eng 37, 2288–2298 (2009). https://doi.org/10.1007/s10439-009-9763-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-009-9763-5

Keywords

Navigation