Skip to main content

Advertisement

Log in

Monitoring In Vivo Load Transmission Through an External Fixator

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

This work presents a portable non-invasive external fixator to assess and monitor fracture healing in real time. To evaluate the potential of this fixator, a transverse osteotomy was performed in the tibia of six adult sheep (mean age 3 ± 0.5 years and weight 63 ± 5 kg). The fractures were stabilized by a specially designed unilateral external fixator, which was instrumented by means of a set of strain gauges. Strains in the external surface of the fixator were monitored during all the healing process. A wireless, remote monitoring of the implant was developed through a specially designed external telemetric device. The strain gauges were arranged in two different half-bridge Wheatstone configurations, allowing easy post-processing of the signal. Thus, bending loads were measured in two planes of the external fixator acting as a load cell. The load through the fixator was evaluated for the gait cycle during all the healing process. Full weight bearing of the injured leg was observed from the beginning. The load transmission mechanism in the fixator was quite similar in all operated tibias and radiographic images showed a successful healing in all animals. Although the fixator has only been tested in an animal model, after further testing this system may have clinical potential.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Abendschein, W. F., and G. W. Hyatt. Ultrasonics and physical properties of healing bone. J. Trauma 12(4):297–301, 1972.

    Article  CAS  PubMed  Google Scholar 

  2. Augat, P., J. Merk, H. K. Genant, and L. Claes. Quantitative assessment of the experimental fracture repair by peripheral computed tomography. Calcif. Tissue Int. 60(2):194–199, 1997.

    Article  CAS  PubMed  Google Scholar 

  3. Burny, F., M. Donkerwolcke, R. Bourgois, M. Domb, and O. Saric. Twenty years experience in fracture healing measurements with strain gauges. Orthopaedics 7:1823–1826, 1984.

    Google Scholar 

  4. Claes, L. E., and J. L. Cunningham. Monitoring the mechanical properties of healing bone. Clin. Orthop. Relat. Res. 467(8):1128–1132, 2009.

    Article  Google Scholar 

  5. Claes, L., K. Eckert-Hübner, and P. Augat. The effect of mechanical stability on local vascularization and tissue differentiation in callus healing. J. Orthop. Res. 20(5):1099–1105, 2002.

    Article  PubMed  Google Scholar 

  6. Claes, L., R. Grass, T. Schmickal, B. Kisse, C. Eggers, H. Gerngross, W. Mutschler, M. Arand, T. Wintermeyer, and A. Wentzensen. Monitoring and healing analysis of 100 tibial shaft fractures. Langenbeck’s Arch. Surg. 387(3–4):146–152, 2002.

    Article  CAS  Google Scholar 

  7. Cullinane, D. M., K. T. Salisbury, Y. Alkhiary, S. Eisenberg, L. Gerstenfeld, and T. A. Einhorn. Effects of the local mechanical environment on vertebrate tissue differentiation during repair: Does repair recapitulate development? J. Exp. Biol. 206:2459–2471, 2003.

    Article  PubMed  Google Scholar 

  8. Cunningham, J. L. The biomechanics of fracture fixation. Curr. Orthop. 15(6):457–464, 2001.

    Article  Google Scholar 

  9. Duda, G. N., K. Eckert-Hübner, R. Sokiranski, A. Kreutner, R. Miller, and L. Claes. Analysis of inter-fragmentary movement as a function of musculoskeletal loading conditions in sheep. J. Biomech. 31(3):201–210, 1997.

    Article  Google Scholar 

  10. Dwyer, J. S., F. J. Owen, G. A. Evans, J. H. Kuiper, and J. B. Richardson. Stiffness measurements to assess healing during leg lengthening: a preliminary report. J. Bone Joint Surg. Br. Vol. 78(2):286–289, 1996.

    CAS  Google Scholar 

  11. Einhorn, T. A. The cell and molecular biology of fracture healing. Clin. Orthop. Relat. Res. 355:S7–S21, 1998.

    Article  PubMed  Google Scholar 

  12. Firoozabadi, R., S. Morshed, K. Engelke, S. Prevrhal, A. Fierlinger, T. Miclau, and H. K. Genant. Qualitative and quantitative assessment of bone fragility and fracture healing using conventional radiography and advanced imaging technologies—focus on wrist fracture. J. Orthop. Trauma 22(8):583–590, 2008.

    Google Scholar 

  13. Hernández, C. J., G. S. Beaupré, T. S. Keller, and D. R. Carter. The influence of bone volume fraction and ash fraction on bone strength and modulus. Bone 29(1):74–78, 2001.

    Article  PubMed  Google Scholar 

  14. Keyak, J. H., I. Lee, and H. B. Skinner. Correlations between orthogonal mechanical properties and density of trabecular bone: use of different densitometric measures. J. Biomech. Mater. Res. 28:1329–1336, 1994.

    Article  CAS  Google Scholar 

  15. Krischak, G. D., A. Janousek, S. Wolf, P. Augat, L. Kinzl, and L. E. Claes. Effects of one-plane and two-plane external fixation on sheep osteotomy healing and complications. Clin. Biomech. 17:470–476, 2002.

    Article  Google Scholar 

  16. Malizos, K. N., A. A. Papachristos, V. C. Protopappas, and D. I. Fotiadis. Transosseous application of low-intensity ultrasound for the enhancement and monitoring of fracture healing process in a sheep osteotomy model. Bone 38:530–539, 2006.

    Article  PubMed  Google Scholar 

  17. Maylia, E., and L. D. M. Nokes. The use of ultrasonics in orthopaedics—a review. Technol. Health Care 7(1):1–28, 1999.

    CAS  PubMed  Google Scholar 

  18. Nakatsuchi, Y., A. Tsuchikane, and A. Nomura. The vibrational mode of the tibia and assessment of bone union in experimental fracture healing using the impulse response method. Med. Eng. Phys. 18(7):575–583, 1996.

    Article  CAS  PubMed  Google Scholar 

  19. Njeh, C. F., J. R. Kearton, D. Hans, and C. M. Boivin. The use of quantitative ultrasound to monitor fracture healing: a feasibility study using phantoms. Med. Eng. Phys. 20(10):781–786, 1999.

    Article  Google Scholar 

  20. Prat, J., J. A. Juana, P. Vera, J. V. Hoyos, R. Dejoz, J..L. Peris, J. Sánchez-Lacuesta, and M. Comín. Load transmission through the callus site with external fixation systems: theoretical and experimental analysis. J. Biomech. 27(4):469–478, 1994.

    Article  CAS  PubMed  Google Scholar 

  21. Protopappas, V. C., M. G. Vavva, D. I. Fotiadis, and K. N. Malizos. Ultrasonic monitoring of bone fracture healing. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 55(6):1243–1255, 2008.

    Article  PubMed  Google Scholar 

  22. Richardson, J. B., J. L. Cunningham, A. E. Goodship, B. T. O’Connor, and J. Kenwright. Measuring stiffness can define healing of tibial fractures. J. Bone Joint Surg. Br. Vol. 76-B(3):389–394, 1994.

    Google Scholar 

  23. Richardson, J. B., J. Kenwright, and J. L. Cunningham. Fracture stiffness measurement in the assessment and management of tibial fractures. Clin. Biomech. 10(8):395–400, 1995.

    Article  Google Scholar 

  24. Seide, K., N. Weinrich, M. E. Wenzl, D. Wolter, and C. Jürgens. Three-dimensional load measurements in an external fixator. J. Biomech. 37:1361–1369, 2004.

    Article  CAS  PubMed  Google Scholar 

  25. Taylor, W. R., R. M. Ehrig, M. O. Heller, H. Schell, P. Seebeck, and G. N. Duda. Tibio-femoral joint contact forces in sheep. J. Biomech. 39(5):791–798, 2006.

    Article  PubMed  Google Scholar 

  26. Wade, R., and J. Richardson. Outcome in fracture healing: a review. Injury 32(2):109–114, 2001.

    Article  CAS  PubMed  Google Scholar 

  27. Wallace, A. L., E. R. Draper, R. K. Strachan, I. D. McCarthy, and S. P. Hughes. The vascular response to fracture micromovement. Clin. Orthop. Relat. Res. 301:281–290, 1994.

    PubMed  Google Scholar 

  28. Webb, J., G. Herling, T. Gardner, J. Kenwright, and A. H. R. W. Simpson. Manual assessment of fracture stiffness. Injury 27(5):319–320, 1996.

    Article  CAS  PubMed  Google Scholar 

  29. Windhagen, H., S. Kolbeck, H. Bail, A. Schmeling, and M. Raschke. Quantitative assessment of in vivo bone regeneration consolidation in distraction osteogenesis. J. Orthop. Res. 18(6):912–919, 2000.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This research was supported by the Spanish Ministry of Science and Technology (grant DPI2006-09692 and FPI grant BES-2007-15607) and the Instituto de Salud Carlos III (CIBER-BBN Centro de Investigación Biomédica en Red, Bioingeniería, Biomateriales y Biomedicina).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. M. García-Aznar.

Additional information

Associate Editor Peter E. McHugh oversaw the review of this article.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Grasa, J., Gómez-Benito, M.J., González-Torres, L.A. et al. Monitoring In Vivo Load Transmission Through an External Fixator. Ann Biomed Eng 38, 605–612 (2010). https://doi.org/10.1007/s10439-009-9889-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-009-9889-5

Keywords

Navigation