Skip to main content
Log in

Mechanical, Compositional, and Structural Properties of the Post-natal Mouse Achilles Tendon

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

During post-natal development, tendons undergo a well orchestrated process whereby extensive structural and compositional changes occur in synchrony to produce a normal tissue. Conversely, during the repair response to injury, structural and compositional changes occur, but in this case, a mechanically inferior tendon is produced. As a result, the process of development has been postulated as a potential paradigm through which improved adult tissue healing may occur. In this study we measured the mechanical, compositional, and structural properties in the post-natal mouse Achilles tendon at 4, 7, 10, 14, 21, and 28 days old. Throughout post-natal development, the mechanical properties, collagen content, fibril diameter mean, and fibril diameter standard deviation increased. Biglycan expression decreased and decorin expression and fiber organization were unchanged. This study provides a new mouse model that can be used to quantitatively examine mechanical development, as well as compositional and structural changes and biological mechanisms, during post-natal tendon development. This model is advantageous due to the large number of genetically modified mice and commercially available assays that are not available in other animal models. A mouse model therefore allows future mechanistic studies to build on this work.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Ansorge, H. L., X. Meng, G. Zhang, G. Veit, M. Sun, J. F. Klement, D. P. Beason, L. J. Soslowsky, M. Koch, and D. E. Birk. Type XIV collagen regulates fibrillogenesis: premature collagen fibril growth and tissue dysfunction in null mice. J. Biol. Chem. 284:8427–8438, 2009.

    Article  PubMed  CAS  Google Scholar 

  2. Beredjiklian, P. K. Biologic aspects of flexor tendon laceration and repair. J. Bone Joint Surg. Am. 85-A:539–550, 2003.

    PubMed  Google Scholar 

  3. Birk, D. E., R. A. Hahn, C. Y. Linsenmayer, and E. I. Zycband. Characterization of collagen fibril segments from chicken embryo cornea, dermis and tendon. Matrix Biol. 15:111–118, 1996.

    Article  PubMed  CAS  Google Scholar 

  4. Birk, D. E., and R. Mayne. Localization of collagen types I, III and V during tendon development. Changes in collagen types I and III are correlated with changes in fibril diameter. Eur. J. Cell Biol. 72:352–361, 1997.

    PubMed  CAS  Google Scholar 

  5. Birk, D. E., E. I. Zycband, D. A. Winkelmann, and R. L. Trelstad. Collagen fibrillogenesis in situ: fibril segments are intermediates in matrix assembly. Proc. Natl Acad. Sci. USA 86:4549–4553, 1989.

    Article  PubMed  CAS  Google Scholar 

  6. Bland, Y. S., and D. E. Ashhurst. Fetal and postnatal development of the patella, patellar tendon and suprapatella in the rabbit; changes in the distribution of the fibrillar collagens. J. Anat. 190(Pt 3):327–342, 1997.

    Article  PubMed  CAS  Google Scholar 

  7. Booth, F. W., and C. M. Tipton. Ligamentous strength measurements in pre-pubescent and pubescent rats. Growth 34:177–185, 1970.

    PubMed  CAS  Google Scholar 

  8. Boykiw, R., P. Sciore, C. Reno, L. Marchuk, C. B. Frank, and D. A. Hart. Altered levels of extracellular matrix molecule mRNA in healing rabbit ligaments. Matrix Biol. 17:371–378, 1998.

    Article  PubMed  CAS  Google Scholar 

  9. Danielson, K. G., H. Baribault, D. F. Holmes, H. Graham, K. E. Kadler, and R. V. Iozzo. Targeted disruption of decorin leads to abnormal collagen fibril morphology and skin fragility. J. Cell Biol. 136:729–743, 1997.

    Article  PubMed  CAS  Google Scholar 

  10. Derwin, K. A., and L. J. Soslowsky. A quantitative investigation of structure–function relationships in a tendon fascicle model. J. Biomech. Eng. 121:598–604, 1999.

    Article  PubMed  CAS  Google Scholar 

  11. Derwin, K. A., L. J. Soslowsky, W. D. Green, and S. H. Elder. A new optical system for the determination of deformations and strains: calibration characteristics and experimental results. J. Biomech. 27:1277–1285, 1994.

    Article  PubMed  CAS  Google Scholar 

  12. Ehrlich, H. P., P. A. Lambert, G. C. Saggers, R. L. Myers, and R. M. Hauck. Dynamic changes appearing in collagen fibers during intrinsic tendon repair. Ann. Plast. Surg. 54:201–206, 2005.

    Article  PubMed  CAS  Google Scholar 

  13. Ezura, Y., S. Chakravarti, A. Oldberg, I. Chervoneva, and D. E. Birk. Differential expression of lumican and fibromodulin regulate collagen fibrillogenesis in developing mouse tendons. J. Cell Biol. 151:779–788, 2000.

    Article  PubMed  CAS  Google Scholar 

  14. Festing, M. F. Design and statistical methods in studies using animal models of development. ILAR J. 47:5–14, 2006.

    PubMed  CAS  Google Scholar 

  15. Franchi, M., M. Fini, M. Quaranta, V. De Pasquale, M. Raspanti, G. Giavaresi, V. Ottani, and A. Ruggeri. Crimp morphology in relaxed and stretched rat Achilles tendon. J. Anat. 210:1–7, 2007.

    Article  PubMed  Google Scholar 

  16. Gimbel, J. A., J. P. Van Kleunen, S. Mehta, S. M. Perry, G. R. Williams, and L. J. Soslowsky. Supraspinatus tendon organizational and mechanical properties in a chronic rotator cuff tear animal model. J. Biomech. 37:739–749, 2004.

    Article  PubMed  Google Scholar 

  17. Lin, T. W., L. Cardenas, and L. J. Soslowsky. Tendon properties in interleukin-4 and interleukin-6 knockout mice. J. Biomech. 38:99–105, 2005.

    PubMed  Google Scholar 

  18. McBride, D. J., R. L. Trelstad, and F. H. Silver. Structural and mechanical assessment of developing chick tendon. Int. J. Biol. Macromol. 10:194–200, 1988.

    Article  CAS  Google Scholar 

  19. Mikic, B., E. Amadei, K. Rossmeier, and L. Bierwert. Sex matters in the establishment of murine tendon composition and material properties during growth. J. Orthop. Res. 28:631–638, 2010.

    PubMed  Google Scholar 

  20. Moore, M. J., and A. De Beaux. A quantitative ultrastructural study of rat tendon from birth to maturity. J. Anat. 153:163–169, 1987.

    PubMed  CAS  Google Scholar 

  21. Neuman, R. E., and M. A. Logan. The determination of hydroxyproline. J. Biol. Chem. 184:299–306, 1950.

    PubMed  CAS  Google Scholar 

  22. Oryan, A., and A. H. Shoushtari. Histology and ultrastructure of the developing superficial digital flexor tendon in rabbits. Anat. Histol. Embryol. 37:134–140, 2008.

    Article  PubMed  CAS  Google Scholar 

  23. Parry, D. A., G. R. Barnes, and A. S. Craig. A comparison of the size distribution of collagen fibrils in connective tissues as a function of age and a possible relation between fibril size distribution and mechanical properties. Proc. R. Soc. Lond. B Biol. Sci. 203:305–321, 1978.

    Article  PubMed  CAS  Google Scholar 

  24. Parry, D. A., A. S. Craig, and G. R. Barnes. Tendon and ligament from the horse: an ultrastructural study of collagen fibrils and elastic fibres as a function of age. Proc. R. Soc. Lond. B Biol. Sci. 203:293–303, 1978.

    Article  PubMed  CAS  Google Scholar 

  25. Peltz, C. D., S. M. Perry, C. L. Getz, and L. J. Soslowsky. Mechanical properties of the long-head of the biceps tendon are altered in the presence of rotator cuff tears in a rat model. J. Orthop. Res. 27:416–420, 2009.

    Article  PubMed  Google Scholar 

  26. Rigozzi, S., R. Muller, and J. G. Snedeker. Collagen fibril morphology and mechanical properties of the Achilles tendon in two inbred mouse strains. J. Anat. 216:724–731, 2010.

    Article  PubMed  CAS  Google Scholar 

  27. Thomopoulos, S., G. Hattersley, V. Rosen, M. Mertens, L. Galatz, G. R. Williams, and L. J. Soslowsky. The localized expression of extracellular matrix components in healing tendon insertion sites: an in situ hybridization study. J. Orthop. Res. 20:454–463, 2002.

    Article  PubMed  CAS  Google Scholar 

  28. Thomopoulos, S., G. R. Williams, J. A. Gimbel, M. Favata, and L. J. Soslowsky. Variation of biomechanical, structural, and compositional properties along the tendon to bone insertion site. J. Orthop. Res. 21:413–419, 2003.

    Article  PubMed  Google Scholar 

  29. Webster, T. Putting a strain on workers’ health. Compens. Work. Cond. Spring:29–31, 1999. http://www.bls.gov/opub/cwc/archive/spring1999brief2.pdf.

  30. Woo, S. L., R. E. Debski, J. Zeminski, S. D. Abramowitch, S. S. Saw, and J. A. Fenwick. Injury and repair of ligaments and tendons. Annu. Rev. Biomed. Eng. 2:83–118, 2000.

    Article  PubMed  CAS  Google Scholar 

  31. Woo, S. L., R. H. Gelberman, N. G. Cobb, D. Amiel, K. Lothringer, and W. H. Akeson. The importance of controlled passive mobilization on flexor tendon healing. A biomechanical study. Acta Orthop. Scand. 52:615–622, 1981.

    Article  PubMed  CAS  Google Scholar 

  32. Woo, S. L., C. A. Orlando, M. A. Gomez, C. B. Frank, and W. H. Akeson. Tensile properties of the medial collateral ligament as a function of age. J. Orthop. Res. 4:133–141, 1986.

    Article  PubMed  CAS  Google Scholar 

  33. Zhang, G., S. Chen, S. Goldoni, B. W. Calder, H. C. Simpson, R. T. Owens, D. J. McQuillan, M. F. Young, R. V. Iozzo, and D. E. Birk. Genetic evidence for the coordinated regulation of collagen fibrillogenesis in the cornea by decorin and biglycan. J. Biol. Chem. 284:8888–8897, 2009.

    Article  PubMed  CAS  Google Scholar 

  34. Zhang, G., Y. Ezura, I. Chervoneva, P. S. Robinson, D. P. Beason, E. T. Carine, L. J. Soslowsky, R. V. Iozzo, and D. E. Birk. Decorin regulates assembly of collagen fibrils and acquisition of biomechanical properties during tendon development. J. Cell Biochem. 98:1436–1449, 2006.

    Article  PubMed  CAS  Google Scholar 

  35. Zhang, G., B. B. Young, Y. Ezura, M. Favata, L. J. Soslowsky, S. Chakravarti, and D. E. Birk. Development of tendon structure and function: regulation of collagen fibrillogenesis. J. Musculoskelet. Neuronal Interact. 5:5–21, 2005.

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported, in whole or in part, by National Institutes of Health Grant AR050950 from NIAMS, supporting the Penn Center for Musculoskeletal Disorders and by National Institutes of Health Grant AR44745. The authors would like to thank David Beason for his expertise in helping develop the mechanical testing fixtures.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Louis J. Soslowsky.

Additional information

Associate Editor Eric M. Darling oversaw the review of this article.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ansorge, H.L., Adams, S., Birk, D.E. et al. Mechanical, Compositional, and Structural Properties of the Post-natal Mouse Achilles Tendon. Ann Biomed Eng 39, 1904–1913 (2011). https://doi.org/10.1007/s10439-011-0299-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-011-0299-0

Keywords

Navigation