Skip to main content

Advertisement

Log in

Hemodynamic Changes Quantified in Abdominal Aortic Aneurysms with Increasing Exercise Intensity Using MR Exercise Imaging and Image-Based Computational Fluid Dynamics

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Abdominal aortic aneurysm (AAA) is a vascular disease resulting in a permanent, localized enlargement of the abdominal aorta. We previously hypothesized that the progression of AAA may be slowed by altering the hemodynamics in the abdominal aorta through exercise [Dalman, R. L., M. M. Tedesco, J. Myers, and C. A. Taylor. Ann. N.Y. Acad. Sci. 1085:92–109, 2006]. To quantify the effect of exercise intensity on hemodynamic conditions in 10 AAA subjects at rest and during mild and moderate intensities of lower-limb exercise (defined as 33 ± 10% and 63 ± 18% increase above resting heart rate, respectively), we used magnetic resonance imaging and computational fluid dynamics techniques. Subject-specific models were constructed from magnetic resonance angiography data and physiologic boundary conditions were derived from measurements made during dynamic exercise. We measured the abdominal aortic blood flow at rest and during exercise, and quantified mean wall shear stress (MWSS), oscillatory shear index (OSI), and particle residence time (PRT). We observed that an increase in the level of activity correlated with an increase of MWSS and a decrease of OSI at three locations in the abdominal aorta, and these changes were most significant below the renal arteries. As the level of activity increased, PRT in the aneurysm was significantly decreased: 50% of particles were cleared out of AAAs within 1.36 ± 0.43, 0.34 ± 0.10, and 0.22 ± 0.06 s at rest, mild exercise, and moderate exercise levels, respectively. Most of the reduction of PRT occurred from rest to the mild exercise level, suggesting that mild exercise may be sufficient to reduce flow stasis in AAAs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

Abbreviations

AAA:

Abdominal aortic aneurysm

CFD:

Computational fluid dynamics

DBP:

Diastolic blood pressure

IR:

Infrarenal

MA:

Mid-aneurysm

MRI:

Magnetic resonance imaging

MWSS:

Mean wall shear stress

OSI:

Oscillatory shear index

PRI:

Particle residence index

PRT:

Particle residence time

RCR:

Resistance (proximal)–capacitance–resistance (distal)

SC:

Supraceliac

SBP:

Systolic blood pressure

SRBF:

Splanchnic and renal blood flows

References

  1. Bluestein, D., L. Niu, R. T. Schoephoerster, and M. K. Dewanjee. Steady flow in an aneurysm model: correlation between fluid dynamics and blood platelet deposition. J. Biomech. Eng. 118:280–286, 1996.

    Article  PubMed  CAS  Google Scholar 

  2. Boussel, L., V. Rayz, C. McCulloch, A. Martin, G. Acevedo-Bolton, M. Lawton, R. Higashida, W. S. Smith, W. L. Young, and D. Saloner. Aneurysm growth occurs at region of low wall shear stress: patient-specific correlation of hemodynamics and growth in a longitudinal study. Stroke 39:2997–3002, 2008.

    Article  PubMed  Google Scholar 

  3. Cao, J., and S. E. Rittgers. Particle motion within in vitro models of stenosed internal carotid and left anterior descending coronary arteries. Ann. Biomed. Eng. 26:190–199, 1998.

    Article  PubMed  CAS  Google Scholar 

  4. Cheng, C. P., R. J. Herfkens, and C. A. Taylor. Abdominal aortic hemodynamic conditions in healthy subjects aged 50–70 at rest and during lower limb exercise: in vivo quantification using MRI. Atherosclerosis 168:323–331, 2003.

    Article  PubMed  CAS  Google Scholar 

  5. Dai, G., M. R. Kaazempur-Mofrad, S. Natarajan, Y. Zhang, S. Vaughn, B. R. Blackman, R. D. Kamm, G. Garcia-Cardena, and M. A. Gimbrone, Jr. Distinct endothelial phenotypes evoked by arterial waveforms derived from atherosclerosis-susceptible and -resistant regions of human vasculature. Proc. Natl. Acad. Sci. 101(41):14871–14876, 2004.

    Article  PubMed  CAS  Google Scholar 

  6. Dalman, R. L., M. M. Tedesco, J. Myers, and C. A. Taylor. AAA disease: mechanism, stratification, and treatment. Ann. N.Y. Acad. Sci. 1085:92–109, 2006.

    Article  PubMed  Google Scholar 

  7. De Meirelles, L. R., A. C. Mendes-Ribeiro, M. A. Mendes, M. N. da Silva, J. C. Ellory, G. E. Mann, and T. M. Brunini. Chronic exercise reduces platelet activation in hypertension: upregulation of the l-arginine-nitric oxide pathway. Scand. J. Med. Sci. Sports 19:67–74, 2009.

    Article  PubMed  Google Scholar 

  8. DeSouza, C. A., L. F. Shapiro, C. M. Clevenger, F. A. Dinenno, K. D. Monahan, H. Tanaka, and D. R. Seals. Regular aerobic exercise prevents and restores age-related declines in endothelium-dependent vasodilation in healthy men. Circulation 102:1351–1357, 2000.

    PubMed  CAS  Google Scholar 

  9. Einav, S., and D. Bluestein. Dynamics of blood flow and platelet transport in pathological vessels. Ann. N.Y. Acad. Sci. 1015:351–366, 2004.

    Article  PubMed  Google Scholar 

  10. Hope, S. A., D. B. Tay, I. T. Meredith, and J. D. Cameron. Waveform dispersion, not reflection, may be the major determinant of aortic pressure wave morphology. Am. J. Physiol. Heart Circ. 289:H2497–H2502, 2005.

    Article  CAS  Google Scholar 

  11. Hoshina, K., E. Sho, M. Sho, T. K. Nakahashi, and R. L. Dalman. Wall shear stress and strain modulate experimental aneurysm cellularity. J. Vasc. Surg. 37:1067–1074, 2003.

    PubMed  Google Scholar 

  12. Humphrey, J. D., and C. A. Taylor. Intracranial and abdominal aortic aneurysms: similarities, differences, and need for a new class of computational models. Annu. Rev. Biomed. Eng. 10:221–246, 2008.

    Article  PubMed  CAS  Google Scholar 

  13. Khanafer, K. M., P. Gadhoke, R. Berguer, and J. L. Bull. Modeling pulsatile flow in aortic aneurysms: effect of nonnewtonian properties of blood. Biorheology 43:661–679, 2006.

    PubMed  Google Scholar 

  14. Kim, H. J., C. A. Figueroa, T. J. Hughes, K. C. Jansen, and C. A. Taylor. Augmented lagrangian method for constraining the shape of velocity profiles at outlet boundaries for three-dimensional finite element simulations of blood flow. Comput. Methods Appl. Mech. Eng. 198:3551–3566, 2009.

    Article  Google Scholar 

  15. Laughlin, M. H. Cardiovascular response to exercise. Am. J. Physiol. 277:244–259, 1999.

    Google Scholar 

  16. Les, A. S., S. C. Shadden, C. A. Figueroa, J. M. Park, M. M. Tedesco, R. J. Herfkens, R. L. Dalman, and C. A. Taylor. Quantification of hemodynamics in abdominal aortic aneurysms during rest and exercise using magnetic resonance imaging and computational fluid dynamics. Ann. Biomed. Eng. 38:1288–1313, 2010.

    Article  PubMed  Google Scholar 

  17. Malek, A. M., S. L. Alper, and S. Izumo. Hemodynamic shear stress and its role in atherosclerosis. J. Am. Med. Assoc. 282:2035–2042, 1999.

    Article  CAS  Google Scholar 

  18. Moore, J. E., Jr., and D. N. Ku. Pulsatile velocity measurements in a model of the human abdominal aorta under resting conditions. J. Biomech. Eng. 116:337–346, 1994.

    Article  PubMed  Google Scholar 

  19. Moore, J. E., Jr., C. Xu, S. Glagov, C. K. Zarins, and D. N. Ku. Fluid wall shear stress measurements in a model of the human abdominal aorta: oscillatory behavior and relationship to atherosclerosis. Atherosclerosis 110:225–240, 1994.

    Article  PubMed  CAS  Google Scholar 

  20. Myers, J. N., J. J. White, B. Narasimhan, and R. L. Dalman. Effects of exercise training in patients with abdominal aortic aneurysm: preliminary results from a randomaized trial. J. Cardiopulm. Rehabil. Prev. 30:374–383, 2010.

    PubMed  Google Scholar 

  21. Nakahashi, T. K., K. Hoshina, P. S. Tsao, E. Sho, M. Sho, J. K. Karwowski, C. Yeh, R. B. Yang, J. N. Topper, and R. L. Dalman. Flow loading induces macrophage antioxidative gene expression in experimental aneurysms. Arterioscler. Thromb. Vasc. Biol. 22:2017–2022, 2002.

    Article  PubMed  CAS  Google Scholar 

  22. Nelson, M. E., W. J. Rejeski, S. N. Blair, P. W. Duncan, J. O. Judge, A. C. King, C. A. Macera, and C. Castaneda-Seppa. Physical activity and public health in older adults. Recommendation from the American College of Sports and Medicine and the American Heart Association. Circulation 116:1094–1105, 2007.

    Article  PubMed  Google Scholar 

  23. Osada, T., T. Katsumura, T. Hamaoka, S. Inoue, K. Esaki, A. Sakamoto, N. Murase, J. Kajiyama, T. Shimomitsu, and H. Iwane. Reduced blood flow in abdominal viscera measured by Doppler ultrasound during one-legged knee extension. J. Appl. Physiol. 86:709–719, 1999.

    PubMed  CAS  Google Scholar 

  24. Plehn, G., J. Vormbrock, T. Butz, M. Christ, H, Trappe, and A. Meissner. Different effect of exercise on left ventricular diastolic time and interventricular dyssnchrony in heart failure patients with and without left bundle branch block. Int. J. Med. Sci. 5:333–340, 2008.

    PubMed  Google Scholar 

  25. Raines, J. K., M. Y. Jaffrin, and A. H. Shapiro. A computer simulation of arterial dynamics in the human leg. J. Biomech. 7:77–91, 1974.

    Article  PubMed  CAS  Google Scholar 

  26. Rowell, L. B. Human Cardiovascular Control. New York: Oxford University Press, 212 pp, 1993.

    Google Scholar 

  27. Rubler, S., V. J. Fisher, S. S. Schreiber, M. A. Rothschild, and A. S. Dobin. Left ventrivular ejection time during exercise testing with scintigraphy. Arch. Intern. Med. 144:1386–1391, 1984.

    Article  PubMed  CAS  Google Scholar 

  28. Sakalihasan, N., R. Limet, and O. D. Defawe. Abdominal aortic aneurysm. Lancet 365:1577–1589, 2005.

    Article  PubMed  CAS  Google Scholar 

  29. Spilker, R. L., and C. A. Taylor. Tuning multiscale hemodynamic simulations to match physiological measurements. Ann. Biomed. Eng. 38:2635–2648, 2010.

    Article  PubMed  Google Scholar 

  30. Suh, G., A. S. Les, A. S. Tenforde, S. C. Shadden, R. L. Spilker, J. J. Yeung, C. P. Cheng, R. J. Herfkens, R. L. Dalman, and C. A. Taylor. Quantification of particle residence time in abdominal aortic aneurysms using magnetic resonance imaging and computational fluid dynamics. Ann. Biomed. Eng. 29:864–883, 2011.

    Article  Google Scholar 

  31. Tang, B. T., C. P. Cheng, M. T. Draney, N. M. Wilson, P. S. Tsao, R. J. Herfkens, and C. A. Taylor. Abdominal aortic hemodynamics in young healthy adults at rest and during lower limb exercise: quantification using image-based computer modeling. Am. J. Physiol. Heart Circ. Physiol. 291:668–676, 2006.

    Article  Google Scholar 

  32. Taylor, C. A., T. J. R. Hughes, and C. K. Zarins. Finite element modeling of blood flow in arteries. Comput. Methods Appl. Mech. Eng. 158:155–196, 1998.

    Article  Google Scholar 

  33. Taylor, C. A., T. J. R. Hughes, and C. K. Zarins. Effect of exercise on hemodynamic conditions in the abdominal aorta. J. Vasc. Surg. 29:1077–1089, 1999.

    Article  PubMed  CAS  Google Scholar 

  34. Tenforde, A. S., C. P. Cheng, G. Suh, R. J. Herfkens, R. L. Dalman, and C. A. Taylor. Quantifying in vivo hemodynamic response to exercise in patients with intermittent claudication and abdominal aortic aneurysms using cine phase-contrast MRI. J. Magn. Reson. Imaging 31:425–429, 2010.

    Article  PubMed  Google Scholar 

  35. Vignon-Clementel, I. E., C. A. Figueroa, K. E. Jensen, and C. A. Taylor. Outflow boundary conditions for three-dimensional finite element modeling of blood flow and pressure in arteries. Comput. Methods Appl. Mech. Eng. 195:3776–3796, 2006.

    Article  Google Scholar 

  36. Whiting, C. H., and K. C. Jansen. A stabilized finite element method for the incompressible Navier–Stokes equations using a hierarchical basis. Int. J. Numer. Methods Fluids 35:93–116, 2001.

    Article  CAS  Google Scholar 

  37. Wilson, N., K. Wang, R. W. Dutton, and C. A. Taylor. A software framework for creating patient specific geometric models from medical imaging data for simulation based medical planning of vascular surgery. Lect. Notes Comput. Sci. 2208:449–456, 2001.

    Article  Google Scholar 

  38. Womersley, J. R. Method for the calculation of velocity, rate of flow and viscous drag in arteries when the pressure gradient in known. J. Physiol. 127:553–563, 1955.

    PubMed  CAS  Google Scholar 

  39. Zarins, C. K., D. P. Giddens, B. K. Bharadvaj, V. S. Sottiurai, R. F. Mabon, and S. Glagov. Carotid bifurcation atherosclerosis. Quantitative correlation of plaque localization with flow velocity profiles and wall shear stress. Circ. Res. 53:502–514, 1983.

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by the National Institutes of Health (P50 HL083800, P41 RR09784), the Lucas Center for Magnetic Resonance Imaging, and the Veterans Affairs Palo Alto Health Care System (VAPAHCS) for the acquisition of experimental data, and NSF (CNS-0619926) for computer resources. Allen Chiou, Victoria Yeh, Yash Narang, and Bartlomiej R. Imielski provided assistance with imaging and modeling. Nan Xiao provided help with quantification of PRT data. We thank all research subjects for their participation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Charles A. Taylor.

Additional information

Associate Editor Kerry Hourigan oversaw the review of this article.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Suh, GY., Les, A.S., Tenforde, A.S. et al. Hemodynamic Changes Quantified in Abdominal Aortic Aneurysms with Increasing Exercise Intensity Using MR Exercise Imaging and Image-Based Computational Fluid Dynamics. Ann Biomed Eng 39, 2186–2202 (2011). https://doi.org/10.1007/s10439-011-0313-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-011-0313-6

Keywords

Navigation