Skip to main content

Advertisement

Log in

Patient-Specific Multiscale Modeling of Blood Flow for Coronary Artery Bypass Graft Surgery

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

We present a computational framework for multiscale modeling and simulation of blood flow in coronary artery bypass graft (CABG) patients. Using this framework, only CT and non-invasive clinical measurements are required without the need to assume pressure and/or flow waveforms in the coronaries and we can capture global circulatory dynamics. We demonstrate this methodology in a case study of a patient with multiple CABGs. A patient-specific model of the blood vessels is constructed from CT image data to include the aorta, aortic branch vessels (brachiocephalic artery and carotids), the coronary arteries and multiple bypass grafts. The rest of the circulatory system is modeled using a lumped parameter network (LPN) 0 dimensional (0D) system comprised of resistances, capacitors (compliance), inductors (inertance), elastance and diodes (valves) that are tuned to match patient-specific clinical data. A finite element solver is used to compute blood flow and pressure in the 3D (3 dimensional) model, and this solver is implicitly coupled to the 0D LPN code at all inlets and outlets. By systematically parameterizing the graft geometry, we evaluate the influence of graft shape on the local hemodynamics, and global circulatory dynamics. Virtual manipulation of graft geometry is automated using Bezier splines and control points along the pathlines. Using this framework, we quantify wall shear stress, wall shear stress gradients and oscillatory shear index for different surgical geometries. We also compare pressures, flow rates and ventricular pressure–volume loops pre- and post-bypass graft surgery. We observe that PV loops do not change significantly after CABG but that both coronary perfusion and local hemodynamic parameters near the anastomosis region change substantially. Implications for future patient-specific optimization of CABG are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13

Similar content being viewed by others

References

  1. Agoshkov, V., A. Quarteroni, and G. Rozza. A mathematical approach in the design of arterial bypass anastomosis using unsteady stokes equations. J. Sci. Comput. 38:139–161, 2006.

    Article  Google Scholar 

  2. Bassiouny, H., S. White, S. Glagov, E. Choi, D. P. Giddens, and C. K. Zarins. Anastomotic intimal hyperplasia: mechanical injury or flow induced. J. Vasc. Surg. 10:326–337, 1989.

    Google Scholar 

  3. Bazilevs, Y., M.-C. Hsu, D. Besnon, S. Sankaran, and A. Marsden. Computational fluid-structure interaction: Methods and application to a total cavopulmonary connection. Comput. Mech. 45(1):77–99, 2009.

    Article  Google Scholar 

  4. Bogren, H., R. Klipstein, D. Firmin, R. Mohiaddin, S. Underwood, R. Rees, and D. Longmore. Quantitation of antegrade and retrograde blood-flow in the human aorta by magnetic-resonance velocity mapping. Am. Heart J. 117(6):1214–1222, 1989.

    Article  PubMed  CAS  Google Scholar 

  5. Bryan, A., and G. D. Angelini. The biology of saphenous vein graft occlusion: etiology and strategies for prevention. Curr. Opin. Cardiol. 9:641–649, 1994.

    Article  PubMed  CAS  Google Scholar 

  6. Burattini, R., P. Sipkema, G. Vanhuis, and N. Westerhof. Identification of canine coronary resistance and intramyocardial compliance on the basis of the waterfall model. Ann. Biomed. Eng. 13(5):385–404, 1985.

    Article  PubMed  CAS  Google Scholar 

  7. DePaola, N., M. A. Gimbrone, Jr., P. F. Davies, and C. F. Dewey, Jr. Vascular endothelium responds to fluid shear stress gradients. Arter. Thromb. Vasc. Biol. 12:1254–1257, 1992

    Article  CAS  Google Scholar 

  8. Dur, O., S. Coskun, K. Coskun, D. Frakes, L. Kara, and K. Pekkan. Computer-aided patient-specific coronary artery graft design improvements using CFD coupled shape optimizer. Cardiovasc. Eng. Technol. 2(1):35–47, 2011.

    Article  PubMed  Google Scholar 

  9. Esmaily Moghadam, M., Y. Bazilevs, T.-Y. Hsia, I. Vignon-Clementel, A. Marsden, and Modeling of Congenital Hearts Alliance (MOCHA). A comparison of outlet boundary treatments for prevention of backflow divergence with relevance to blood flow simulations. Comput. Mech. 48(3):277–291, 2011.

    Article  Google Scholar 

  10. Esmaily Moghadam, M., I. Vignon-Clementel, R. Figliola, and A. Marsden. A modular numerical method for implicit 0D/3D coupling in cardiovascular finite element simulations. J. Comput. Phys., 2011, in review.

  11. Giddens, D., C. K. Zarins, and S. Glagov. The role of fluid mechanics in localization and detection of atherosclerosis. J. Biomech. Eng. 115:588–594, 1993.

    Article  PubMed  CAS  Google Scholar 

  12. Giordana, S., S. Sherwin, J. Pelro, D. Doorly, J. Crane, K. Lee, N. Cheshire, and C. Caro. Local and global geometric influence on steady flow in distal anastomoses of peripheral bypass grafts. J. Biomech. Eng. 127:1087–1098, 2005.

    Article  PubMed  CAS  Google Scholar 

  13. Haruguchi, H., and S. Teraoka. Intimal hyperplasia and hemodynamic factors in arterial bypass and arteriovenous grafts: a review. J. Artifi. Organs 6:227–235, 2003.

    Article  Google Scholar 

  14. Holzapfel, G. A., T. Gasser, and T. Ogden. A new constitutive framework for arterial wall mechanics and a comparative study of material models. J. Elast. 61:1–48, 2000.

    Article  Google Scholar 

  15. Inzoli, F., F. Migliavacca, and G. Pennati. Numerical analysis of steady flow in aorto-coronary bypass 3D model. J. Biomech. Eng. 118:172–179, 1996.

    Article  PubMed  CAS  Google Scholar 

  16. Jansen, K. E., C. H. Whiting, and G. M. Hulbert. A generalized-alpha method for integrating the filtered Navier Stokes equations with a stabilized finite element method. Comput. Methods Appl. Mech. Eng. 190(3–4):305–319, 2000.

    Article  Google Scholar 

  17. Johnson, K., P. Sharma, and J. Oshinski. Coronary artery flow measurement using navigator echo gated phase contrast magnetic resonance velocity mapping at 3.0 t. J. Biomech. 41:595–602, 2008.

    Article  PubMed  Google Scholar 

  18. Katia, L., R. Balossino, F. Migliavacca, G. Pennati, E. Bove, M. de Leval, and G. Dubini. Multiscale modeling of the cardiovascular system: application to the study of pulmonary and coronary perfusions in the univentricular circulation. J. Biomech. 28:1129–1141, 2004.

    Google Scholar 

  19. Keynton, R., M. Evancho, R. Sims, N. Rodway, A. Gobin, and S. Rittgers. Intimal hyperplasia and wall shear in arterial bypass graft distal anastomosis: an in vivo model study. J. Biomech. Eng. 123:464–473, 2001.

    Article  PubMed  CAS  Google Scholar 

  20. Kim, H., I. E. Vignon-Clementel, J. Coogan, C. Figueroa, K. Jansen, and C. Taylor. On coupling a lumped parameter heart model and a three-dimensional finite element aorta model. Ann. Biomed. Eng. 37(11):2153–2169, 2009.

    Article  PubMed  CAS  Google Scholar 

  21. Kim, H., I. Vignon-Clementel, A. Figueroa, J. Ladisa, K. Jansen, J. Feinstein, and C. Taylor. Patient-specific modeling of blood flow and pressure in human coronary arteries. Ann. Biomed. Eng. 38(10):3195–3209, 2010.

    Article  PubMed  CAS  Google Scholar 

  22. Kohler, T., T. R. Kirkman, L. W. Kraiss, B. K. Zierler, and A. W. Clowes. Increased blood flow inhibits neointimal hyperplasia in endothelialized vascular grafts. Circ. Res. 69:1557–1565, 1991.

    Article  PubMed  CAS  Google Scholar 

  23. Ku, D. Blood flow in arteries. Ann. Rev. Fluid Mech. 29:399–434, 1997.

    Article  Google Scholar 

  24. Lagan, K., G. Dubini, F. Migliavacca, R. Pietrabissa, G. Pennati, A. Veneziani, and A. Quarteroni. Multiscale modelling as a tool to prescribe realistic boundary conditions for the study of surgical procedures. Biorheology 39:359–364, 2002.

    Google Scholar 

  25. Lei, M., J. Archie, and C. Kleinstreur. Computational design of a bypass graft that minimizes wall shear stress gradients in the region of the distal anastomosis. J. Vasc. Surg. 25(4):637–646, 1997.

    Article  PubMed  CAS  Google Scholar 

  26. Liu, M., G. S. Roubin, and S. King. Restenosis after coronary angioplasty: potential biologic determinants and role of intimal hyperplasia. Circulation 79:1374–1387, 1989.

    Article  PubMed  CAS  Google Scholar 

  27. Loth, F., P. F. Fischer, and H. S. Bassiouny. Blood flow in end-to-side anastomosis. Ann. Rev. Fluid Mech. 40:367–393, 2008.

    Article  Google Scholar 

  28. Loth, F., S. A. Jones, C. K. Zarins, D. P. Giddens, R. F. Nassar, S. Glagov, and H. S. Bassiouny. Relative contribution of wall shear stress and injury in experimental intimal thickening at PTFE end-to-side arterial anastomoses. J. Biomech. Eng. 124:44–51, 2002.

    Article  PubMed  Google Scholar 

  29. Malek, A. M., S. L. Alper, and S. Izumo. Hemodynamic shear stress and its role in atherosclerosis. J. Am. Med. Assoc. 282(21):2035–2042, 1999.

    Article  CAS  Google Scholar 

  30. Manthaa, A., C. Karmonikc, G. Benndorfb, C. Strotherc, and R. Metcalfea. Hemodynamics in a cerebral artery before and after the formation of an aneurysm. Am. J. Neuroradiol. 27:1113–1118, 2006.

    Google Scholar 

  31. Marsden, A., J. Feinstein, and C. Taylor. A computational framework for derivative-free optimization of cardiovascular geometries. Comput. Methods Appl. Mech. Eng. 197(21–24):1890–1905, 2008.

    Article  Google Scholar 

  32. Mehta, D., M. B. Izzat, A. J. Bryan, and G. D. Angelini. Towards the prevention of vein graft failure. Int. J. Cardiol. 62(1):S55–S63, 1997.

    Article  PubMed  Google Scholar 

  33. Migliavacca, F., and G. Dubini. Computational modeling of vascular anastomoses. Biomech. Model. Mechanobiol. 3:235–250, 2005.

    Article  PubMed  Google Scholar 

  34. Moore, J., D. A. Steinman, S. Prakash, K. W. Johnson, and C. R. Ethier. A numerical study of blood flow patterns in anatomically realistic and simplified end-to-side anastomoses. J. Biomech. Eng. 121:265–272, 1999.

    Article  PubMed  CAS  Google Scholar 

  35. Neal, M., and J. Bassingthwaighte. Subject-specific model estimation of cardiac output and blood volume during hemorrhage. Cardiovasc. Eng. 7(3):97–120, 2007.

    Article  PubMed  Google Scholar 

  36. Nikkari, S., and A. W. Clowes. Restenosis after vascular reconstruction. Ann. Med. 26:95–100, 1994.

    Article  PubMed  CAS  Google Scholar 

  37. Ojha, M. Spatial and temporal variations of wall shear stress within an end-to-side arterial anastomosis model. J. Biomech. 26(12):1377–1388, 1993.

    Article  PubMed  CAS  Google Scholar 

  38. Ojha, M. Wall shear stress temporal gradient and anastomotic intimal hyperplasia. Circ. Res. 74:1227–1231, 1994.

    Article  PubMed  CAS  Google Scholar 

  39. Rittgers, S., P. Karayannacos, J. Guy, R. Nerem, G. Shaw, J. Hostetler, and J. Vasko. Velocity distribution and intimal proliferation in autologous vein grafts in dogs. Circ. Res. 42(6):792–801, 1978.

    Article  PubMed  CAS  Google Scholar 

  40. Samady, H., P. Eshtehardi, M. McDaniel, J. Suo, S. Dhawan, C. Maynard, L. Timmins, A. Quyyumi, and D. Giddens. Coronary artery wall shear stress is associated with progression and transformation of atherosclerotic plaque and arterial remodeling in patients with coronary artery disease. Circulation 124:779–788, 2011.

    Article  PubMed  CAS  Google Scholar 

  41. Sankaran, S., and A. Marsden. The impact of uncertainty on shape optimization of idealized bypass graft models in unsteady flow. Phys. Fluids 22:121902, 2010.

    Article  Google Scholar 

  42. Sankaran, S., and A. Marsden. A stochastic collocation method for uncertainty quantification and propagation in cardiovascular simulations. J. Biomech. Eng. 133:031001, 2011.

    Article  PubMed  Google Scholar 

  43. Sankaranarayanan, M., D. Ghista, C. Poh, T. Seng, and G. Kassab. Analysis of blood flow in an out-of-plane CABG model. Am. J. Physiol. Heart Circ. Physiol. 291:H283–H295, 2006

    Article  PubMed  CAS  Google Scholar 

  44. Senzaki, H., C. H. Chen, and D. A. Kass. Single beat estimation of end-systolic pressure-volume relation in humans: a new method with the potential for noninvasive application. Circulation 94(10):2497–2506, 1996.

    Article  PubMed  CAS  Google Scholar 

  45. Shimogonya, Y., T. Ishikawa, Y. Imai, N. Matsuki, and T. Yamaguchi. Can temporal fluctuation in spatial wall shear stress gradient initiate a cerebral aneurysm? A proposed novel hemodynamic index, the gradient oscillatory number (GON). J. Biomech. 42(4):550–554, 2009.

    Article  PubMed  Google Scholar 

  46. Siogkas, P. K., A. I. Sakellarios, T. P. Exarchos, K. Stefanou, D. I. Fotiadis, K. Naka, L. Michalis, N. Filipovic, and O. Parodi. Blood flow in arterial segments: rigid vs. deformable walls simulations. J. Serbian Soc. Comput. Mech. 5(1):69–77, 2011.

    Google Scholar 

  47. Staalsen, N., M. Ulrich, J. Winther, E. Pedersen, T. How, and H. Nygaard. The anastomosis angle does change the flow fields at vascular end-to-side anastomoses in vivo. J. Vasc. Surg. 21:460–471, 1995.

    Article  PubMed  CAS  Google Scholar 

  48. Taylor, C., M. Draney, J. Ku, D. Parker, B. Steele, K. Wang, and C. Zarins. Predictive medicine: computational techniques in therapeutic decision-making. Comput. Aided Surg. 4(5):231–247, 1999.

    Article  PubMed  CAS  Google Scholar 

  49. Taylor, C. A., T. J. R. Hughes, and C. K. Zarins. Finite element modeling of blood flow in arteries. Comput. Methods Appl. Mech. Eng. 158(1–2):155–196, 1997.

    Article  Google Scholar 

  50. Walker, J., M. B. Ratcliffe, P. Zhang, A. W. Wallace, B. Fata, E. W. Hsu, D. Saloner, and J. M. Guccione. MRI-based finite-element analysis of left ventricular aneurysm. Am. J. Physiol. 289:H692–H700, 2005.

    Article  CAS  Google Scholar 

  51. Wilson, N., K. Wang, R. Dutton, and C. A. Taylor. A software framework for creating patient specific geometric models from medical imaging data for simulation based medical planning of vascular surgery. Lect. Notes Comput. Sci. 2208:449–456, 2001.

    Article  Google Scholar 

  52. Yang, W., I. Vignon-Clementel, G. Troianowski, V. Mohan Reddy, J. Feinstein, and A. Marsden. Hepatic blood flow distribution and performance in conventional and novel Y-graft Fontan geometries: a case series computational fluid dynamics study. J. Thorac. Cardiovasc. Surg. 143(5):1086–1097, 2012.

    Article  PubMed  Google Scholar 

  53. Zamir, M., P. Sinclair, and T. H. Wonnacott. Relation between diameter and flow in major branches of the arch of the aorta. J. Biomech. 25:1303–1310, 1992.

    Article  PubMed  CAS  Google Scholar 

  54. Zarins, C., M. A. Zatina, D. P. Giddens, D. N. Ku, and S. Glagov. Shear stress regulation of artery lumen diameter in experimental atherogenesis. J. Vasc. Surg. 5:413–420, 1987.

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge funding from an American Heart Association postdoctoral fellowship, the Leducq Foundation, a Burroughs Wellcome Fund Career Award at the Scientific Interface, and NIH grant RHL102596A for funding this work. We thank Hyun Jin Kim for expertise on coronary modeling, and Francesco Migliavacca for expertise on multiscale modeling. Dr. Guccione acknowledges funding from the National Institute of Health, grant numbers R01HL077921 and R01HL086400.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alison L. Marsden.

Additional information

Associate Editor John H. Linehan oversaw the review of this article.

Appendix

Appendix

Here, we provide details on computing the WSS gradients used in this study. For each element e, let the normal be denoted by n e and the mean shear stress be denoted by \(\bar{\tau}^e = \,\parallel \bar{\tau} \parallel{s^{e}_1}. \) The direction s e2 is computed as \(s^{e}_2=\frac{s^{e}_{1} \times n^{e}}{\parallel s^{e}_{1} \times n^{e} \parallel }. \) The components of elemental shear stress in these two directions are computed by taking a dot product with the directions. We can compute the gradients as follows:

$$ \bigtriangledown_{s_i} \tau^e_{s_i} = s_i \cdot \bigtriangledown \tau^{e} \cdot s_i. $$
(7)

The gradient of the shear stresses are evaluated at each tetrahedral element as:

$$ \bigtriangledown \tau^{e}_{i,j} = \sum_{A=1}^{3} N_{A,j}\tau^{i}_{A}. $$
(8)

The corresponding MWSSG is represented as \(\overline{\tau^{G,e}}. \) We then derive the nodal values as

$$ \int\limits_{\Upomega} \overline{\tau^{G}(x)} w(x) d\Upomega = \int\limits_{\Upomega} \overline{\tau^{G,e}} w(x) d\Upomega. $$
(9)

Discretizing this equation and choosing the test functions as shape functions, we have

$$ {\mathbf A}_{e=1}^{nel} \left( N_{A}, N_{B} \right) \overline{\tau^{G}_B} = {\mathbf A}_{e=1}^{nel} (N_{A},1) \overline{\tau^{G,e}}, $$
(10)

where A denotes the assembly matrix. Integrating this equation, we observe that:

$$ {\mathbf A}_{e=1}^{nel} \frac{ | J_e |}{24} \left( \begin{array}{lll} 2 &1 & 1 \\ 1 & 2 & 1 \\ 1 & 1 & 2 \end{array} \right) \left( \begin{array}{l} \overline{\tau^{G}_{1}} \\ \overline{\tau^{G}_{2}} \\ \overline{\tau^{G}_{3}} \end{array} \right) = {\mathbf A}_{e=1}^{nel} \frac{ |J_e |}{6} \left( \begin{array}{l} 1 \\ 1 \\ 1 \end{array} \right) \overline{\tau^{G,e}}. $$
(11)

This equation is found from the least squares method (minimizing the difference between τG and τG,e). For the purpose of visualization, we approximate the LHS system to choose nodal values that are weighted averages of the elemental solutions.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sankaran, S., Esmaily Moghadam, M., Kahn, A.M. et al. Patient-Specific Multiscale Modeling of Blood Flow for Coronary Artery Bypass Graft Surgery. Ann Biomed Eng 40, 2228–2242 (2012). https://doi.org/10.1007/s10439-012-0579-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-012-0579-3

Keywords

Navigation