Skip to main content
Log in

Multiscale Imaging and Computational Modeling of Blood Flow in the Tumor Vasculature

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

The evolution in our understanding of tumor angiogenesis has been the result of pioneering imaging and computational modeling studies spanning the endothelial cell, microvasculature and tissue levels. Many of these primary data on the tumor vasculature are in the form of images from pre-clinical tumor models that provide a wealth of qualitative and quantitative information in many dimensions and across different spatial scales. However, until recently, the visualization of changes in the tumor vasculature across spatial scales remained a challenge due to a lack of techniques for integrating micro- and macroscopic imaging data. Furthermore, the paucity of three-dimensional (3-D) tumor vascular data in conjunction with the challenges in obtaining such data from patients presents a serious hurdle for the development and validation of predictive, multiscale computational models of tumor angiogenesis. In this review, we discuss the development of multiscale models of tumor angiogenesis, new imaging techniques capable of reproducing the 3-D tumor vascular architecture with high fidelity, and the emergence of “image-based models” of tumor blood flow and molecular transport. Collectively, these developments are helping us gain a fundamental understanding of the cellular and molecular regulation of tumor angiogenesis that will benefit the development of new cancer therapies. Eventually, we expect this exciting integration of multiscale imaging and mathematical modeling to have widespread application beyond the tumor vasculature to other diseases involving a pathological vasculature, such as stroke and spinal cord injury.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Ameer-Beg, S. M., P. R. Barber, R. J. Hodgkiss, R. J. Locke, R. G. Newman, G. M. Tozer, B. Vojnovic, and J. Wilson. Application of multiphoton steady state and lifetime imaging to mapping of tumour vascular architecture in vivo. Proc. SPIE. 4620:85–95, 2002.

    Article  CAS  Google Scholar 

  2. Anderson, A. R., and V. Quaranta. Integrative mathematical oncology. Nat. Rev. Cancer 8(3):227–234, 2008.

    Article  PubMed  CAS  Google Scholar 

  3. Andres, A. C., and V. Djonov. The mammary gland vasculature revisited. J. Mammary Gland Biol. Neoplasia. 15(3):319–328, 2010.

    Article  PubMed  Google Scholar 

  4. Augsburger, L., P. Reymond, D. A. Rufenacht, and N. Stergiopulos. Intracranial stents being modeled as a porous medium: flow simulation in stented cerebral aneurysms. Ann. Biomed. Eng. 39(2):850–863, 2011.

    Article  PubMed  CAS  Google Scholar 

  5. Baish, J. W., T. Stylianopoulos, R. M. Lanning, W. S. Kamoun, D. Fukumura, L. L. Munn, and R. K. Jain. Scaling rules for diffusive drug delivery in tumor and normal tissues. Proc. Natl Acad. Sci. USA. 108(5):1799–1803, 2011.

    Article  PubMed  Google Scholar 

  6. Banerjee, S., M. Dowsett, A. Ashworth, and L. A. Martin. Mechanisms of disease: angiogenesis and the management of breast cancer. Nat. Clin. Pract. Oncol. 4(9):536–550, 2007.

    Article  PubMed  CAS  Google Scholar 

  7. Barrett, T., H. Kobayashi, M. Brechbiel, and P. L. Choyke. Macromolecular MRI contrast agents for imaging tumor angiogenesis. Eur. J. Radiol. 60(3):353–366, 2006.

    Article  PubMed  Google Scholar 

  8. Beard, D. A., and J. B. Bassingthwaighte. The fractal nature of myocardial blood flow emerges from a whole-organ model of arterial network. J. Vasc. Res. 37(4):282–296, 2000.

    Article  PubMed  CAS  Google Scholar 

  9. Benedict, K. F., G. S. Coffin, E. J. Barrett, and T. C. Skalak. Hemodynamic systems analysis of capillary network remodeling during the progression of type 2 diabetes. Microcirculation 18(1):63–73, 2011.

    Article  PubMed  Google Scholar 

  10. Bergers, G., and L. E. Benjamin. Tumorigenesis and the angiogenic switch. Nat. Rev. Cancer 3(6):401–410, 2003.

    Article  PubMed  CAS  Google Scholar 

  11. Berrios-Otero, C. A., Y. Z. Wadghiri, B. J. Nieman, A. L. Joyner, and D. H. Turnbull. Three-dimensional micro-MRI analysis of cerebral artery development in mouse embryos. Magn. Reson. Med. 62(6):1431–1439, 2009.

    Article  PubMed  Google Scholar 

  12. Bhise, N. S., R. B. Shmueli, J. C. Sunshine, S. Y. Tzeng, and J. J. Green. Drug delivery strategies for therapeutic angiogenesis and antiangiogenesis. Expert. Opin. Drug. Deliv. 8(4):485–504, 2011.

    Article  PubMed  CAS  Google Scholar 

  13. Boxerman, J. L., L. M. Hamberg, B. R. Rosen, and R. M. Weisskoff. MR contrast due to intravascular magnetic susceptibility perturbations. Magn. Reson. Med. 34(4):555–566, 1995.

    Article  PubMed  CAS  Google Scholar 

  14. Broumas, A. R., R. E. Pollard, S. H. Bloch, E. R. Wisner, S. Griffey, and K. W. Ferrara. Contrast-enhanced computed tomography and ultrasound for the evaluation of tumor blood flow. Invest. Radiol. 40(3):134–147, 2005.

    Article  PubMed  Google Scholar 

  15. Bui, A., I. D. Sutalo, R. Manasseh, and K. Liffman. Dynamics of pulsatile flow in fractal models of vascular branching networks. Med. Biol. Eng. Comput. 47(7):763–772, 2009.

    Article  PubMed  Google Scholar 

  16. Bullitt, E., N. U. Lin, J. K. Smith, D. Zeng, E. P. Winer, L. A. Carey, W. Lin, and M. G. Ewend. Blood vessel morphologic changes depicted with MR angiography during treatment of brain metastases: a feasibility study. Radiology 245(3):824–830, 2007.

    Article  PubMed  Google Scholar 

  17. Butler, J. M., H. Kobayashi, and S. Rafii. Instructive role of the vascular niche in promoting tumour growth and tissue repair by angiocrine factors. Nat. Rev. Cancer 10(2):138–146, 2010.

    Article  PubMed  CAS  Google Scholar 

  18. Byrne, H. M. Dissecting cancer through mathematics: from the cell to the animal model. Nat. Rev. Cancer 10(3):221–230, 2010.

    Article  PubMed  CAS  Google Scholar 

  19. Cai, Y., S. Xu, J. Wu, and Q. Long. Coupled modelling of tumour angiogenesis, tumour growth and blood perfusion. J. Theor. Biol. 279(1):90–101, 2011.

    Article  PubMed  Google Scholar 

  20. Carmeliet, P., and R. K. Jain. Principles and mechanisms of vessel normalization for cancer and other angiogenic diseases. Nat. Rev. Drug. Discov. 10(6):417–427, 2011.

    Article  PubMed  CAS  Google Scholar 

  21. Cassot, F., F. Lauwers, C. Fouard, S. Prohaska, and V. Lauwers-Cances. A novel three-dimensional computer-assisted method for a quantitative study of microvascular networks of the human cerebral cortex. Microcirculation 13(1):1–18, 2006.

    Article  PubMed  CAS  Google Scholar 

  22. Cebulla, J., E. Kim, J. Zhang, and A. P. Pathak. Multi-scale imaging of angiogenesis in a breast cancer model. Proc. Int. Soc Mag Reson Med. 19(758), 2011.

  23. Chaplain, M. A. J., S. R. McDougall, and A. R. A. Anderson. Blood flow and tumour-induced angiogenesis: dynamically adapting vascular networks. In: Modeling Tumor Vasculature: Molecular, Cellular, and Tissue Level Aspects and Implications, edited by T. L. Jackson. New York: Springer, 2012, pp. 167–212.

  24. Chien, C. C., I. M. Kempson, C. L. Wang, H. H. Chen, Y. Hwu, N. Y. Chen, T. K. Lee, C. Petibois, K. K. Tsai, M. S. Liu, K. Y. Chang, C. S. Yang, and G. Margaritondo. Complete microscale profiling of tumor microangiogenesis A microradiological methodology reveals fundamental aspects of tumor angiogenesis and yields an array of quantitative parameters for its characterization. Biotechnol. Adv. 2011.

  25. Choe, S. C., G. Zhao, Z. Zhenyuan Zhao, J. D. Rosenblatt, H.-M. Cho, S.-U. Shin, and N. F. Johnson. Model for in vivo progression of tumors based on co-evolving cell population and vasculature. Sci. Rep. 1(31):1–8, 2011.

    Google Scholar 

  26. Cookson, A. N., J. Lee, C. Michler, R. Chabiniok, E. Hyde, D. A. Nordsletten, M. Sinclair, M. Siebes, and N. P. Smith. A novel porous mechanical framework for modelling the interaction between coronary perfusion and myocardial mechanics. J. Biomech. 2011.

  27. Deane, B. R., and P. L. Lantos. The vasculature of experimental brain tumours. Part 1. A sequential light and electron microscope study of angiogenesis. J. Neurol. Sci. 49(1):55–66, 1981.

    Article  PubMed  CAS  Google Scholar 

  28. Deisboeck, T. S., L. Zhang, J. Yoon, and J. Costa. In silico cancer modeling: is it ready for prime time? Nat. Clin. Pract. Oncol. 6(1):34–42, 2009.

    Article  PubMed  CAS  Google Scholar 

  29. Denk, W., J. H. Strickler, and W. W. Webb. Two-photon laser scanning fluorescence microscopy. Science 248(4951):73–76, 1990.

    Article  PubMed  CAS  Google Scholar 

  30. Dewhirst, M. W., C. Y. Tso, R. Oliver, C. S. Gustafson, T. W. Secomb, and J. F. Gross. Morphologic and hemodynamic comparison of tumor and healing normal tissue microvasculature. Int. J. Radiat. Oncol. Biol. Phys. 17(1):91–99, 1989.

    Article  PubMed  CAS  Google Scholar 

  31. Doblas, S., T. He, D. Saunders, J. Pearson, J. Hoyle, N. Smith, M. Lerner, and R. A. Towner. Glioma morphology and tumor-induced vascular alterations revealed in seven rodent glioma models by in vivo magnetic resonance imaging and angiography. J. Magn. Reson. Imaging 32(2):267–275, 2010.

    Article  PubMed  Google Scholar 

  32. Dorr, A., J. G. Sled, and N. Kabani. Three-dimensional cerebral vasculature of the CBA mouse brain: a magnetic resonance imaging and micro computed tomography study. Neuroimage 35(4):1409–1423, 2007.

    Article  PubMed  CAS  Google Scholar 

  33. Dreher, M. R., W. Liu, C. R. Michelich, M. W. Dewhirst, F. Yuan, and A. Chilkoti. Tumor vascular permeability, accumulation, and penetration of macromolecular drug carriers. J. Natl Cancer Inst. 98(5):335–344, 2006.

    Article  PubMed  CAS  Google Scholar 

  34. Du, W., Y. Wang, Q. Luo, and B. F. Liu. Optical molecular imaging for systems biology: from molecule to organism. Anal. Bioanal. Chem. 386(3):444–457, 2006.

    Article  PubMed  CAS  Google Scholar 

  35. Ferrara, N. VEGF and the quest for tumour angiogenesis factors. Nat. Rev. Cancer 2(10):795–803, 2002.

    Article  PubMed  CAS  Google Scholar 

  36. Figueiredo, G., C. Brockmann, H. Boll, M. Heilmann, S. J. Schambach, T. Fiebig, M. Kramer, C. Groden, and M. A. Brockmann. Comparison of digital subtraction angiography, micro-computed tomography angiography and magnetic resonance angiography in the assessment of the cerebrovascular system in live mice. Clin. Neuroradiol. 2011.

  37. Folarin, A. A., M. A. Konerding, J. Timonen, S. Nagl, and R. B. Pedley. Three-dimensional analysis of tumour vascular corrosion casts using stereoimaging and micro-computed tomography. Microvasc. Res. 80(1):89–98, 2010.

    Article  PubMed  CAS  Google Scholar 

  38. Folkman, J. Tumor angiogenesis: therapeutic implications. N. Engl. J. Med. 285(21):1182–1186, 1971.

    Article  PubMed  CAS  Google Scholar 

  39. Folkman, J. The influence of angiogenesis research on management of patients with breast cancer. Breast Cancer Res. Treat. 36(2):109–118, 1995.

    Article  PubMed  CAS  Google Scholar 

  40. Fukumura, D., D. G. Duda, L. L. Munn, and R. K. Jain. Tumor microvasculature and microenvironment: novel insights through intravital imaging in pre-clinical models. Microcirculation 17(3):206–225, 2010.

    Article  PubMed  CAS  Google Scholar 

  41. Fukumura, D., and R. K. Jain. Tumor microvasculature and microenvironment: targets for anti-angiogenesis and normalization. Microvasc. Res. 74(2–3):72–84, 2007.

    Article  PubMed  CAS  Google Scholar 

  42. Ganesan, P., S. He, and H. Xu. Analysis of retinal circulation using an image-based network model of retinal vasculature. Microvasc. Res. 80(1):99–109, 2010.

    Article  PubMed  CAS  Google Scholar 

  43. Gijtenbeek, J. M., P. Wesseling, C. Maass, L. Burgers, and J. A. van der Laak. Three-dimensional reconstruction of tumor microvasculature: simultaneous visualization of multiple components in paraffin-embedded tissue. Angiogenesis 8(4):297–305, 2005.

    Article  PubMed  CAS  Google Scholar 

  44. Grinberg, L., E. Cheever, T. Anor, J. R. Madsen, and G. E. Karniadakis. Modeling blood flow circulation in intracranial arterial networks: a comparative 3D/1D simulation study. Ann. Biomed. Eng. 39(1):297–309, 2011.

    Article  PubMed  CAS  Google Scholar 

  45. Hanahan, D., and R. A. Weinberg. Hallmarks of cancer: the next generation. Cell 144(5):646–674, 2011.

    Article  PubMed  CAS  Google Scholar 

  46. Hatzikirou, H., A. Chauviere, A. L. Bauer, A. Leier, M. T. Lewis, P. Macklin, T. T. Marquez-Lago, E. L. Bearer, and V. Cristini. Integrative physical oncology. Wiley Interdiscip Rev. Syst. Biol. Med. 4(1):1–14, 2012.

    Article  PubMed  Google Scholar 

  47. Heinzer, S., T. Krucker, M. Stampanoni, R. Abela, E. P. Meyer, A. Schuler, P. Schneider, and R. Muller. Hierarchical microimaging for multiscale analysis of large vascular networks. Neuroimage 32(2):626–636, 2006.

    Article  PubMed  Google Scholar 

  48. Henkelman, R. M. Systems biology through mouse imaging centers: experience and new directions. Annu. Rev. Biomed. Eng. 12:143–166, 2010.

    Article  PubMed  CAS  Google Scholar 

  49. Hori, S. S., and S. S. Gambhir. Mathematical model identifies blood biomarker-based early cancer detection strategies and limitations. Sci. Trans. Med. 3(109):109ra116, 2011.

    Google Scholar 

  50. Howles, G. P., K. B. Ghaghada, Y. Qi, S. Mukundan, Jr., and G. A. Johnson. High-resolution magnetic resonance angiography in the mouse using a nanoparticle blood-pool contrast agent. Magn. Reson. Med. 62(6):1447–1456, 2009.

    Article  PubMed  Google Scholar 

  51. Huang, D., E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, et al. Optical coherence tomography. Science 254(5035):1178–1181, 1991.

    Article  PubMed  CAS  Google Scholar 

  52. Humphrey, J. D., and C. A. Taylor. Intracranial and abdominal aortic aneurysms: similarities, differences, and need for a new class of computational models. Annu. Rev. Biomed. Eng. 10:221–246, 2008.

    Article  PubMed  CAS  Google Scholar 

  53. Huo, Y., J. S. Choy, M. Svendsen, A. K. Sinha, and G. S. Kassab. Effects of vessel compliance on flow pattern in porcine epicardial right coronary arterial tree. J. Biomech. 42(5):594–602, 2009.

    Article  PubMed  Google Scholar 

  54. Huo, Y., B. Kaimovitz, Y. Lanir, T. Wischgoll, J. I. Hoffman, and G. S. Kassab. Biophysical model of the spatial heterogeneity of myocardial flow. Biophys. J. 96(10):4035–4043, 2009.

    Article  PubMed  CAS  Google Scholar 

  55. Jain, R. K. Determinants of tumor blood flow: a review. Cancer Res. 48(10):2641–2658, 1988.

    PubMed  CAS  Google Scholar 

  56. Jain, R. K. Normalization of tumor vasculature: an emerging concept in antiangiogenic therapy. Science 307(5706):58–62, 2005.

    Article  PubMed  CAS  Google Scholar 

  57. Jain, R. K. Taming vessels to treat cancer. Sci. Am. 298(1):56–63, 2008.

    Article  PubMed  Google Scholar 

  58. Jain, R. K., D. G. Duda, C. G. Willett, D. V. Sahani, A. X. Zhu, J. S. Loeffler, T. T. Batchelor, and A. G. Sorensen. Biomarkers of response and resistance to antiangiogenic therapy. Nat. Rev. Clin. Oncol. 6(6):327–338, 2009.

    Article  PubMed  CAS  Google Scholar 

  59. Jain, R. K., and T. Stylianopoulos. Delivering nanomedicine to solid tumors. Nat. Rev. Clin. Oncol. 7(11):653–664, 2010.

    Article  PubMed  CAS  Google Scholar 

  60. Jain, R. K., R. T. Tong, and L. L. Munn. Effect of vascular normalization by antiangiogenic therapy on interstitial hypertension, peritumor edema, and lymphatic metastasis: insights from a mathematical model. Cancer Res. 67(6):2729–2735, 2007.

    Article  PubMed  CAS  Google Scholar 

  61. Ji, J. W., N. M. Tsoukias, D. Goldman, and A. S. Popel. A computational model of oxygen transport in skeletal muscle for sprouting and splitting modes of angiogenesis. J. Theor. Biol. 241(1):94–108, 2006.

    Article  PubMed  Google Scholar 

  62. Johnson, G. A., H. Benveniste, R. T. Engelhardt, H. Qiu, and L. W. Hedlund. Magnetic resonance microscopy in basic studies of brain structure and function. Ann. N. Y. Acad. Sci. 820:139–147, 1997.

    Article  PubMed  CAS  Google Scholar 

  63. Johnson, G. A., G. P. Cofer, S. L. Gewalt, and L. W. Hedlund. Morphologic phenotyping with MR microscopy: the visible mouse. Radiology 222(3):789–793, 2002.

    Article  PubMed  Google Scholar 

  64. Kamoun, W. S., S. S. Chae, D. A. Lacorre, J. A. Tyrrell, M. Mitre, M. A. Gillissen, D. Fukumura, R. K. Jain, and L. L. Munn. Simultaneous measurement of RBC velocity, flux, hematocrit and shear rate in vascular networks. Nat. Methods 7(8):655–660, 2010.

    Article  PubMed  CAS  Google Scholar 

  65. Kherlopian, A. R., T. Song, Q. Duan, M. A. Neimark, M. J. Po, J. K. Gohagan, and A. F. Laine. A review of imaging techniques for systems biology. BMC Syst. Biol. 2(74), 2008.

  66. Kim, E., J. Zhang, K. Hong, N. E. Benoit, and A. P. Pathak. Vascular phenotyping of brain tumors using magnetic resonance microscopy (muMRI). J. Cereb. Blood Flow Metab. 31(7):1623–1636, 2011.

    Article  PubMed  Google Scholar 

  67. Konerding, M. A., W. Malkusch, B. Klapthor, C. van Ackern, E. Fait, S. A. Hill, C. Parkins, D. J. Chaplin, M. Presta, and J. Denekamp. Evidence for characteristic vascular patterns in solid tumours: quantitative studies using corrosion casts. Br. J. Cancer 80(5–6):724–732, 1999.

    Article  PubMed  CAS  Google Scholar 

  68. Lee, J., and N. P. Smith. Theoretical modeling in hemodynamics of microcirculation. Microcirculation 15(8):699–714, 2008.

    Article  PubMed  Google Scholar 

  69. Lee, J., and N. Smith. Development and application of a one-dimensional blood flow model for microvascular networks. Proc. Inst. Mech. Eng. H. 222(4):487–511, 2008.

    Article  PubMed  CAS  Google Scholar 

  70. Less, J. R., T. C. Skalak, E. M. Sevick, and R. K. Jain. Microvascular architecture in a mammary carcinoma: branching patterns and vessel dimensions. Cancer Res. 51(1):265–273, 1991.

    PubMed  CAS  Google Scholar 

  71. Liu, G., A. A. Qutub, P. Vempati, F. Mac Gabhann, and A. S. Popel. Module-based multiscale simulation of angiogenesis in skeletal muscle. Theor. Biol. Med. Model. 8(6), 2011.

  72. Liu, D., N. B. Wood, N. Witt, A. D. Hughes, S. A. Thom, and X. Y. Xu. Computational analysis of oxygen transport in the retinal arterial network. Curr. Eye Res. 34(11):945–956, 2009.

    Article  PubMed  CAS  Google Scholar 

  73. Lloyd, B. A., D. Szczerba, M. Rudin, and G. Szekely. A computational framework for modelling solid tumour growth. Philos. Trans. A Math. Phys. Eng. Sci. 366(1879):3301–3318, 2008.

    Article  Google Scholar 

  74. Lorthois, S., F. Cassot, and F. Lauwers. Simulation study of brain blood flow regulation by intra-cortical arterioles in an anatomically accurate large human vascular network. Part II: flow variations induced by global or localized modifications of arteriolar diameters. Neuroimage 54(4):2840–2853, 2011.

    Article  PubMed  CAS  Google Scholar 

  75. Lorthois, S., F. Cassot, and F. Lauwers. Simulation study of brain blood flow regulation by intra-cortical arterioles in an anatomically accurate large human vascular network: part I: methodology and baseline flow. Neuroimage 54(2):1031–1042, 2011.

    Article  PubMed  CAS  Google Scholar 

  76. Mac Gabhann, F., J. W. Ji, and A. S. Popel. Computational model of vascular endothelial growth factor spatial distribution in muscle and pro-angiogenic cell therapy. PLoS Comput. Biol. 2(9):e127, 2006.

    Article  PubMed  CAS  Google Scholar 

  77. Malkusch, W., M. A. Konerding, B. Klapthor, and J. Bruch. A simple and accurate method for 3-D measurements in microcorrosion casts illustrated with tumour vascularization. Anal. Cell. Pathol. 9(1):69–81, 1995.

    PubMed  CAS  Google Scholar 

  78. Martin, N. K., E. A. Gaffney, R. A. Gatenby, R. J. Gillies, I. F. Robey, and P. K. Maini. A mathematical model of tumour and blood pHe regulation: the HCO3 /CO2 buffering system. Math. Biosci. 230(1):1–11, 2011.

    Article  PubMed  CAS  Google Scholar 

  79. Martinez, A., V. G. Marin, S. R. Junquera, R. Martinez-Murillo, and M. Freire. The contributions of Santiago Ramon y Cajal to cancer research—100 years on. Nat. Rev. Cancer 5(11):904–909, 2005.

    Article  PubMed  CAS  Google Scholar 

  80. Marxen, M., J. G. Sled, L. X. Yu, C. Paget, and R. M. Henkelman. Comparing microsphere deposition and flow modeling in 3D vascular trees. Am. J. Physiol. Heart Circ. Physiol. 291(5):H2136–H2141, 2006.

    Article  PubMed  CAS  Google Scholar 

  81. Marzo, A., P. Singh, P. Reymond, N. Stergiopulos, U. Patel, and R. Hose. Influence of inlet boundary conditions on the local haemodynamics of intracranial aneurysms. Comput. Methods Biomech. Biomed. Eng. 12(4):431–444, 2009.

    Article  Google Scholar 

  82. McDonald, D. M., and P. L. Choyke. Imaging of angiogenesis: from microscope to clinic. Nat. Med. 9(6):713–725, 2003.

    Article  PubMed  CAS  Google Scholar 

  83. McDougall, S. R., A. R. Anderson, M. A. Chaplain, and J. A. Sherratt. Mathematical modelling of flow through vascular networks: implications for tumour-induced angiogenesis and chemotherapy strategies. Bull. Math. Biol. 64(4):673–702, 2002.

    Article  PubMed  CAS  Google Scholar 

  84. Megason, S. G., and S. E. Fraser. Imaging in systems biology. Cell 130(5):784–795, 2007.

    Article  PubMed  CAS  Google Scholar 

  85. Morbiducci, U., D. Gallo, D. Massai, F. Consolo, R. Ponzini, L. Antiga, C. Bignardi, M. A. Deriu, and A. Redaelli. Outflow conditions for image-based hemodynamic models of the carotid bifurcation: implications for indicators of abnormal flow. J. Biomech. Eng. 132(9):091005, 2010.

    Article  PubMed  Google Scholar 

  86. Munn, L. L., W. Kamoun, M. Dupin, and J. A. Tyrell. Modeling structural and functional adaptation of tumor vessel networks during antiangiogenic therapy. In: Modeling Tumor Vasculature: Molecular, Cellular, and Tissue Level Aspects and Implications, edited by T. L. Jackson. New York: Springer, 2012, pp. 213–233.

  87. Murphy, E. A., B. K. Majeti, L. A. Barnes, M. Makale, S. M. Weis, K. Lutu-Fuga, W. Wrasidlo, and D. A. Cheresh. Nanoparticle-mediated drug delivery to tumor vasculature suppresses metastasis. Proc. Natl Acad. Sci. USA. 105(27):9343–9348, 2008.

    Article  PubMed  Google Scholar 

  88. Ng, L., A. Bernard, C. Lau, C. C. Overly, H. W. Dong, C. Kuan, S. Pathak, S. M. Sunkin, C. Dang, J. W. Bohland, H. Bokil, P. P. Mitra, L. Puelles, J. Hohmann, D. J. Anderson, E. S. Lein, A. R. Jones, and M. Hawrylycz. An anatomic gene expression atlas of the adult mouse brain. Nat. Neurosci. 12(3):356–362, 2009.

    Article  PubMed  CAS  Google Scholar 

  89. Pathak, A. P. Magnetic resonance susceptibility based perfusion imaging of tumors using iron oxide nanoparticles. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 1(1):84–97, 2009.

    Article  PubMed  CAS  Google Scholar 

  90. Pathak, A. P., W. E. Hochfeld, S. L. Goodman, and M. S. Pepper. Circulating and imaging markers for angiogenesis. Angiogenesis 11(4):321–335, 2008.

    Article  PubMed  CAS  Google Scholar 

  91. Pathak, A. P., E. Kim, J. Zhang, and M. V. Jones. Three-dimensional imaging of the mouse neurovasculature with magnetic resonance microscopy. PLoS ONE 6(7):e22643, 2011.

    Article  PubMed  CAS  Google Scholar 

  92. Pathak, A. P., M. F. Penet, and Z. M. Bhujwalla. MR molecular imaging of tumor vasculature and vascular targets. Adv. Genet. 69:1–30, 2010.

    Article  PubMed  CAS  Google Scholar 

  93. Pathak, A. P., B. D. Ward, and K. M. Schmainda. A novel technique for modeling susceptibility-based contrast mechanisms for arbitrary microvascular geometries: the finite perturber method. Neuroimage 40(3):1130–1143, 2008.

    Article  PubMed  Google Scholar 

  94. Peng, H. Bioimage informatics: a new area of engineering biology. Bioinformatics 24(17):1827–1836, 2008.

    Article  PubMed  CAS  Google Scholar 

  95. Perfahl, H., H. M. Byrne, T. Chen, V. Estrella, T. Alarcon, A. Lapin, R. A. Gatenby, R. J. Gillies, M. C. Lloyd, P. K. Maini, M. Reuss, and M. R. Owen. Multiscale modelling of vascular tumour growth in 3D: the roles of domain size and boundary conditions. PLoS ONE 6(4):e14790, 2011.

    Article  PubMed  CAS  Google Scholar 

  96. Popel, A. S., and P. C. Johnson. Microcirculation and hemorheology. Annu. Rev. Fluid Mech. 37:43–69, 2005.

    Article  PubMed  Google Scholar 

  97. Pries, A. R., A. J. Cornelissen, A. A. Sloot, M. Hinkeldey, M. R. Dreher, M. Hopfner, M. W. Dewhirst, and T. W. Secomb. Structural adaptation and heterogeneity of normal and tumor microvascular networks. PLoS Comput. Biol. 5(5):e1000394, 2009.

    Article  PubMed  CAS  Google Scholar 

  98. Pries, A. R., M. Hopfner, F. le Noble, M. W. Dewhirst, and T. W. Secomb. The shunt problem: control of functional shunting in normal and tumour vasculature. Nat. Rev. Cancer 10(8):587–593, 2010.

    Article  PubMed  CAS  Google Scholar 

  99. Pries, A. R., B. Reglin, and T. W. Secomb. Remodeling of blood vessels: responses of diameter and wall thickness to hemodynamic and metabolic stimuli. Hypertension 46(4):725–731, 2005.

    Article  PubMed  CAS  Google Scholar 

  100. Pries, A. R., and T. W. Secomb. Microvascular blood viscosity in vivo and the endothelial surface layer. Am. J. Physiol. Heart Circ. Physiol. 289(6):H2657–H2664, 2005.

    Article  PubMed  CAS  Google Scholar 

  101. Pries, A. R., T. W. Secomb, P. Gaehtgens, and J. F. Gross. Blood flow in microvascular networks. Experiments and simulation. Circ. Res. 67(4):826–834, 1990.

    Article  PubMed  CAS  Google Scholar 

  102. Pries, A. R., T. W. Secomb, T. Gessner, M. B. Sperandio, J. F. Gross, and P. Gaehtgens. Resistance to blood flow in microvessels in vivo. Circ. Res. 75(5):904–915, 1994.

    Article  PubMed  CAS  Google Scholar 

  103. Qutub, A. A., F. Mac Gabhann, E. D. Karagiannis, P. Vempati, and A. S. Popel. Multiscale models of angiogenesis. IEEE Eng. Med. Biol. Mag. 28(2):14–31, 2009.

    Article  PubMed  Google Scholar 

  104. Rege, A., N. V. Thakor, K. Rhie, and A. P. Pathak. In vivo laser speckle imaging reveals microvascular remodeling and hemodynamic changes during wound healing angiogenesis. Angiogenesis 15(1):87–98, 2012.

    Article  PubMed  Google Scholar 

  105. Reichold, J., M. Stampanoni, A. Lena Keller, A. Buck, P. Jenny, and B. Weber. Vascular graph model to simulate the cerebral blood flow in realistic vascular networks. J. Cereb. Blood Flow Metab. 29(8):1429–1443, 2009.

    Article  PubMed  Google Scholar 

  106. Rejniak, K. A., and A. R. Anderson. Hybrid models of tumor growth. Wiley Interdiscip. Rev. Syst. Biol. Med. 3(1):115–125, 2010.

    Article  CAS  Google Scholar 

  107. Risser, L., F. Plouraboue, A. Steyer, P. Cloetens, G. Le Duc, and C. Fonta. From homogeneous to fractal normal and tumorous microvascular networks in the brain. J. Cereb. Blood Flow Metab. 27(2):293–303, 2007.

    Article  PubMed  Google Scholar 

  108. Ruoslahti, E. Specialization of tumour vasculature. Nat. Rev. Cancer 2(2):83–90, 2002.

    Article  PubMed  Google Scholar 

  109. Schneider, B. P., and K. D. Miller. Angiogenesis of breast cancer. J. Clin. Oncol. 23(8):1782–1790, 2005.

    Article  PubMed  CAS  Google Scholar 

  110. Secomb, T. W., M. W. Dewhirst, and A. R. Pries. Structural adaptation of normal and tumour vascular networks. Basic Clin. Pharmacol. Toxicol. 110(1):63–69, 2011.

    Article  PubMed  CAS  Google Scholar 

  111. Secomb, T. W., R. Hsu, M. W. Dewhirst, B. Klitzman, and J. F. Gross. Analysis of oxygen transport to tumor tissue by microvascular networks. Int. J. Radiat. Oncol. Biol. Phys. 25(3):481–489, 1993.

    Article  PubMed  CAS  Google Scholar 

  112. Song, J. W., and L. L. Munn. Fluid forces control endothelial sprouting. Proc. Natl Acad. Sci. USA. 108(37):15342–15347, 2011.

    Article  PubMed  Google Scholar 

  113. Spilker, R. L., J. A. Feinstein, D. W. Parker, V. M. Reddy, and C. A. Taylor. Morphometry-based impedance boundary conditions for patient-specific modeling of blood flow in pulmonary arteries. Ann. Biomed. Eng. 35(4):546–559, 2007.

    Article  PubMed  Google Scholar 

  114. Stefanini, M. O., A. A. Qutub, F. Mac Gabhann, and A. S. Popel. Computational models of VEGF-associated angiogenic processes in cancer. Math. Med. Biol. 2011.

  115. Su, S. W., M. Catherall, and S. Payne. The influence of network structure on the transport of blood in the human cerebral microvasculature. Microcirculation. 2011.

  116. Tang, B. T., T. A. Fonte, F. P. Chan, P. S. Tsao, J. A. Feinstein, and C. A. Taylor. Three-dimensional hemodynamics in the human pulmonary arteries under resting and exercise conditions. Ann. Biomed. Eng. 39(1):347–358, 2011.

    Article  PubMed  Google Scholar 

  117. Tozer, G. M., S. M. Ameer-Beg, J. Baker, P. R. Barber, S. A. Hill, R. J. Hodgkiss, R. Locke, V. E. Prise, I. Wilson, and B. Vojnovic. Intravital imaging of tumour vascular networks using multi-photon fluorescence microscopy. Adv. Drug Deliv. Rev. 57(1):135–152, 2005.

    Article  PubMed  CAS  Google Scholar 

  118. Tsoukias, N. M., D. Goldman, A. Vadapalli, R. N. Pittman, and A. S. Popel. A computational model of oxygen delivery by hemoglobin-based oxygen carriers in three-dimensional microvascular networks. J. Theor. Biol. 248(4):657–674, 2007.

    Article  PubMed  CAS  Google Scholar 

  119. Vakoc, B. J., R. M. Lanning, J. A. Tyrrell, T. P. Padera, L. A. Bartlett, T. Stylianopoulos, L. L. Munn, G. J. Tearney, D. Fukumura, R. K. Jain, and B. E. Bouma. Three-dimensional microscopy of the tumor microenvironment in vivo using optical frequency domain imaging. Nat. Med. 15(10):1219–1223, 2009.

    Article  PubMed  CAS  Google Scholar 

  120. van Vliet, M., C. F. van Dijke, P. A. Wielopolski, T. L. ten Hagen, J. F. Veenland, A. Preda, A. J. Loeve, A. M. Eggermont, and G. P. Krestin. MR angiography of tumor-related vasculature: from the clinic to the micro-environment. Radiographics 25(Suppl 1):S85–S97, 2005.

    Article  PubMed  Google Scholar 

  121. Verli, F. D., T. R. Rossi-Schneider, F. L. Schneider, L. S. Yurgel, and M. A. de Souza. Vascular corrosion casting technique steps. Scanning 29(3):128–132, 2007.

    Article  PubMed  CAS  Google Scholar 

  122. Vermeulen, P. B., K. L. van Golen, and L. Y. Dirix. Angiogenesis, lymphangiogenesis, growth pattern, and tumor emboli in inflammatory breast cancer: a review of the current knowledge. Cancer 116(11 Suppl):2748–2754, 2010.

    Article  PubMed  CAS  Google Scholar 

  123. Vignon-Clementel, I. E., C. A. Figueroa, K. E. Jansen, and C. A. Taylor. Outflow boundary conditions for 3D simulations of non-periodic blood flow and pressure fields in deformable arteries. Comput. Methods Biomech. Biomed. Eng. 13(5):625–640, 2010.

    Article  CAS  Google Scholar 

  124. Walter, T., D. W. Shattuck, R. Baldock, M. E. Bastin, A. E. Carpenter, S. Duce, J. Ellenberg, A. Fraser, N. Hamilton, S. Pieper, M. A. Ragan, J. E. Schneider, P. Tomancak, and J. K. Heriche. Visualization of image data from cells to organisms. Nat. Methods 7(3 Suppl):S26–S41, 2010.

    Article  PubMed  CAS  Google Scholar 

  125. Wu, J., Q. Long, S. Xu, and A. R. Padhani. Study of tumor blood perfusion and its variation due to vascular normalization by anti-angiogenic therapy based on 3D angiogenic microvasculature. J. Biomech. 42(6):712–721, 2009.

    Article  PubMed  Google Scholar 

  126. Yang, J., L. X. Yu, M. Y. Rennie, J. G. Sled, and R. M. Henkelman. Comparative structural and hemodynamic analysis of vascular trees. Am. J. Physiol. Heart Circ. Physiol. 298(4):H1249–H1259, 2010.

    Article  PubMed  CAS  Google Scholar 

  127. Yun, S., G. Tearney, J. de Boer, N. Iftimia, and B. Bouma. High-speed optical frequency-domain imaging. Opt. Express 11(22):2953–2963, 2003.

    Article  PubMed  CAS  Google Scholar 

  128. Zagorchev, L., P. Oses, Z. W. Zhuang, K. Moodie, M. J. Mulligan-Kehoe, M. Simons, and T. Couffinhal. Micro computed tomography for vascular exploration. J. Angiogenes. Res. 2(7), 2010.

  129. Zhou, M., O. Sahni, H. J. Kim, C. A. Figueroa, C. A. Taylor, M. S. Shephard, and K. E. Jansen. Cardiovascular flow simulation at extreme scale. Comput. Mech. 46(1):71–82, 2010.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Research supported by Komen Foundation Grant KG090640, JHU Institute for Nanobiotechnology (INBT) Faculty Pilot Award, Bayer Science and Education Foundation Fellowship, and National Institutes of Health (NIH) grant R01 CA138264.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arvind P. Pathak.

Additional information

Associate Editor Michael R. King oversaw the review of this article.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, E., Stamatelos, S., Cebulla, J. et al. Multiscale Imaging and Computational Modeling of Blood Flow in the Tumor Vasculature. Ann Biomed Eng 40, 2425–2441 (2012). https://doi.org/10.1007/s10439-012-0585-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-012-0585-5

Keywords

Navigation