Skip to main content
Log in

Cationic Nanoparticles Have Superior Transvascular Flux into Solid Tumors: Insights from a Mathematical Model

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Despite their great promise, only a few nanoparticle formulations have been approved for clinical use in oncology. The failure of nano-scale drugs to enhance cancer therapy is in large part due to inefficient delivery. To overcome this outstanding problem, a better understanding of how the physical properties (i.e., size, surface chemistry, and shape) of nanoparticles affect their transvascular transport in tumors is required. In this study, we developed a mathematical model for nanoparticle delivery to solid tumors taking into account electrostatic interactions between the particles and the negatively-charged pores of the vessel wall. The model predictions suggest that electrostatic repulsion has a minor effect on the transvascular transport of nanoparticles. On the contrary, electrostatic attraction, caused even by small cationic charges (surface charge density less than 3 × 10−3 C/m2) can lead to a twofold or more increase in the transvascular flux of nanoparticles into the tumor interstitial space. Importantly, for every nanoparticle size, there is a value of charge density above which a steep increase in transvascular transport is predicted. Our model provides important guidelines for the optimal design of nanoparticle formulation for delivery to solid tumors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Baish, J. W., P. A. Netti, and R. K. Jain. Transmural coupling of fluid flow in microcirculatory network and interstitium in tumors. Microvasc. Res. 53:128–141, 1997.

    Article  PubMed  CAS  Google Scholar 

  2. Baxter, L. T., and R. K. Jain. Transport of fluid and macromolecules in tumors. II. Role of heterogeneous perfusion and lymphatics. Microvasc. Res. 40:246–263, 1990.

    Article  PubMed  CAS  Google Scholar 

  3. Boucher, Y., and R. K. Jain. Microvascular pressure is the principal driving force for interstitial hypertension in solid tumors: implications for vascular collapse. Cancer Res. 52:5110–5114, 1992.

    PubMed  CAS  Google Scholar 

  4. Bungay, P. M., and H. Brenner. The motion of a closely fitting sphere in a fluid-filled tube. Int. J. Multiph. Flow 1:25–56, 1973.

    Article  Google Scholar 

  5. Campbell, R. B., D. Fukumura, E. B. Brown, L. M. Mazzola, Y. Izumi, R. K. Jain, V. P. Torchilin, and L. L. Munn. Cationic charge determines the distribution of liposomes between the vascular and extravascular compartments of tumors. Cancer Res. 62:6831–6836, 2002.

    PubMed  CAS  Google Scholar 

  6. Chauhan, V. P., Z. Popovic, O. Chen, J. Cui, D. Fukumura, M. G. Bawendi, and R. K. Jain. Fluorescent nanorods and nanospheres for real-time in vivo probing of nanoparticle shape-dependent tumor penetration. Angew. Chem. Int. Ed. Engl. 50:11417–11420, 2011.

    Article  PubMed  CAS  Google Scholar 

  7. Chauhan, V. P., T. Stylianopoulos, Y. Boucher, and R. K. Jain. Delivery of molecular and nanomedicine to tumors: transport barriers and strategies. Annu. Rev. Chem. Biomol. Eng. 2:281–298, 2011.

    Article  PubMed  CAS  Google Scholar 

  8. Chauhan, V. P., T. Stylianopoulos, J. D. Martin, Z. Popovic, O. Chen, W. S. Kamoun, M. G. Bawendi, D. Fukumura, and R. K. Jain. Normalization of tumour blood vessels improves the delivery of nanomedicines in a size-dependent manner. Nat. Nanotechnol. 7:383–388, 2012.

    Article  PubMed  CAS  Google Scholar 

  9. Clauss, M. A., and R. K. Jain. Interstitial transport of rabbit and sheep antibodies in normal and neoplastic tissues. Cancer Res. 50:3487–3492, 1990.

    PubMed  CAS  Google Scholar 

  10. Decuzzi, P., and M. Ferrari. Design maps for nanoparticles targeting the diseased microvasculature. Biomaterials 29:377–384, 2008.

    Article  PubMed  CAS  Google Scholar 

  11. Deen, W. M. Hindered transport of large molecules in liquid-filled pores. AIChE J. 33:1409–1425, 1987.

    Article  CAS  Google Scholar 

  12. Dellian, M., F. Yuan, V. S. Trubetskoy, V. P. Torchilin, and R. K. Jain. Vascular permeability in a human tumour xenograft: molecular charge dependence. Br. J. Cancer 82:1513–1518, 2000.

    Article  PubMed  CAS  Google Scholar 

  13. Diop-Frimpong, B., V. P. Chauhan, S. Krane, Y. Boucher, and R. K. Jain. Losartan inhibits collagen I synthesis and improves the distribution and efficacy of nanotherapeutics in tumors. Proc. Natl. Acad. Sci. USA 108:2909–2914, 2011.

    Article  PubMed  CAS  Google Scholar 

  14. Gerlowski, L. E., and R. K. Jain. Microvascular permeability of normal and neoplastic tissues. Microvasc. Res. 31:288–305, 1986.

    Article  PubMed  CAS  Google Scholar 

  15. Hashizume, H., P. Baluk, S. Morikawa, J. W. McLean, G. Thurston, S. Roberge, R. K. Jain, and D. M. McDonald. Openings between defective endothelial cells explain tumor vessel leakiness. Am. J. Pathol. 156:1363–1380, 2000.

    Article  PubMed  CAS  Google Scholar 

  16. Hobbs, S. K., W. L. Monsky, F. Yuan, W. G. Roberts, L. Griffith, V. P. Torchilin, and R. K. Jain. Regulation of transport pathways in tumor vessels: role of tumor type and microenvironment. Proc. Natl. Acad. Sci. USA 95:4607–4612, 1998.

    Article  PubMed  CAS  Google Scholar 

  17. Hood, J. D., M. Bednarski, R. Frausto, S. Guccione, R. A. Reisfeld, R. Xiang, and D. A. Cheresh. Tumor regression by targeted gene delivery to the neovasculature. Science 296:2404–2407, 2002.

    Article  PubMed  CAS  Google Scholar 

  18. Jain, R. K. Transport of molecules across tumor vasculature. Cancer Metastasis Rev. 6:559–593, 1987.

    Article  PubMed  CAS  Google Scholar 

  19. Jain, R. K. Determinants of tumor blood flow: a review. Cancer Res. 48:2641–2658, 1988.

    PubMed  CAS  Google Scholar 

  20. Jain, R. K. Normalizing tumor vasculature with anti-angiogenic therapy: a new paradigm for combination therapy. Nat. Med. 7:987–989, 2001.

    Article  PubMed  CAS  Google Scholar 

  21. Jain, R. K. Normalization of tumor vasculature: an emerging concept in antiangiogenic therapy. Science 307:58–62, 2005.

    Article  PubMed  CAS  Google Scholar 

  22. Jain, R. K., and T. Stylianopoulos. Delivering nanomedicine to solid tumors. Nat. Rev. Clin. Oncol. 7:653–664, 2010.

    Article  PubMed  CAS  Google Scholar 

  23. Longmire, M., P. L. Choyke, and H. Kobayashi. Clearance properties of nano-sized particles and molecules as imaging agents: considerations and caveats. Nanomedicine (Lond) 3:703–717, 2008.

    Article  CAS  Google Scholar 

  24. McDougall, S. R., A. R. Anderson, and M. A. Chaplain. Mathematical modelling of dynamic adaptive tumour-induced angiogenesis: clinical implications and therapeutic targeting strategies. J. Theor. Biol. 241:564–589, 2006.

    Article  PubMed  Google Scholar 

  25. Netti, P. A., D. A. Berk, M. A. Swartz, A. J. Grodzinsky, and R. K. Jain. Role of extracellular matrix assembly in interstitial transport in solid tumors. Cancer Res. 60:2497–2503, 2000.

    PubMed  CAS  Google Scholar 

  26. Nugent, L. J., and R. K. Jain. Extravascular diffusion in normal and neoplastic tissues. Cancer Res. 44:238–244, 1984.

    PubMed  CAS  Google Scholar 

  27. Park, S., and K. Hamad-Schifferli. Evaluation of hydrodynamic size and zeta-potential of surface-modified Au nanoparticle-DNA conjugates via Ferguson analysis. J. Phys. Chem. 112:7611–7676, 2008.

    CAS  Google Scholar 

  28. Pluen, A., Y. Boucher, S. Ramanujan, T. D. McKee, T. Gohongi, E. di Tomaso, E. B. Brown, Y. Izumi, R. B. Campbell, D. A. Berk, and R. K. Jain. Role of tumor-host interactions in interstitial diffusion of macromolecules: cranial vs. subcutaneous tumors. Proc. Natl. Acad. Sci. USA 98:4628–4633, 2001.

    Article  PubMed  CAS  Google Scholar 

  29. Popovic, Z., W. Liu, V. P. Chauhan, J. Lee, C. Wong, A. B. Greytak, N. Insin, D. G. Nocera, D. Fukumura, R. K. Jain, and M. G. Bawendi. A nanoparticle size series for in vivo fluorescence imaging. Angew. Chem. Int. Ed. Engl. 49:8649–8652, 2010.

    Article  PubMed  CAS  Google Scholar 

  30. Ruoslahti, E., S. N. Bhatia, and M. J. Sailor. Targeting of drugs and nanoparticles to tumors. J. Cell Biol. 188:759–768, 2010.

    Article  PubMed  CAS  Google Scholar 

  31. Sarin, H. Physiologic upper limits of pore size of different blood capillary types and another perspective on the dual pore theory of microvascular permeability. J. Angiogenes Res. 2:14, 2010.

    Article  PubMed  Google Scholar 

  32. Schmitt-Sody, M., S. Strieth, S. Krasnici, B. Sauer, B. Schulze, M. Teifel, U. Michaelis, K. Naujoks, and M. Dellian. Neovascular targeting therapy: paclitaxel encapsulated in cationic liposomes improves antitumoral efficacy. Clin. Cancer Res. 9:2335–2341, 2003.

    PubMed  CAS  Google Scholar 

  33. Sevick, E. M., and R. K. Jain. Viscous resistance to blood flow in solid tumors: effect of hematocrit on intratumor blood viscosity. Cancer Res. 49:3513–3519, 1989.

    PubMed  CAS  Google Scholar 

  34. Smith, F. G., and W. M. Deen. Electrostatic effects on the partitioning of spherical colloids between dilute bulk solution and cylindrical pores. J. Colloid Interface Sci. 91:571–590, 1983.

    Article  CAS  Google Scholar 

  35. Stohrer, M., Y. Boucher, M. Stangassinger, and R. K. Jain. Oncotic pressure in solid tumors is elevated. Cancer Res. 60:4251–4255, 2000.

    PubMed  CAS  Google Scholar 

  36. Stylianopoulos, T., M. Z. Poh, N. Insin, M. G. Bawendi, D. Fukumura, L. L. Munn, and R. K. Jain. Diffusion of particles in the extracellular matrix: the effect of repulsive electrostatic interactions. Biophys. J. 99:1342–1349, 2010.

    Article  PubMed  CAS  Google Scholar 

  37. Stylianopoulos, T., A. Yeckel, J. J. Derby, X. J. Luo, M. S. Shephard, E. A. Sander, and V. H. Barocas. Permeability calculations in three-dimensional isotropic and oriented fiber networks. Phys Fluids (1994) 20:123601, 2008.

    Google Scholar 

  38. Sugahara, K. N., T. Teesalu, P. P. Karmali, V. R. Kotamraju, L. Agemy, O. M. Girard, D. Hanahan, R. F. Mattrey, and E. Ruoslahti. Tissue-penetrating delivery of compounds and nanoparticles into tumors. Cancer Cell 16:510–520, 2009.

    Article  PubMed  CAS  Google Scholar 

  39. Tong, R. T., Y. Boucher, S. V. Kozin, F. Winkler, D. J. Hicklin, and R. K. Jain. Vascular normalization by vascular endothelial growth factor receptor 2 blockade induces a pressure gradient across the vasculature and improves drug penetration in tumors. Cancer Res. 64:3731–3736, 2004.

    Article  PubMed  CAS  Google Scholar 

  40. Torchilin, V. P. Targeted pharmaceutical nanocarriers for cancer therapy and imaging. AAPS J. 9:E128–E147, 2007.

    Article  PubMed  CAS  Google Scholar 

  41. Wong, C., T. Stylianopoulos, J. Cui, J. Martin, V. P. Chauhan, W. Jiang, Z. Popovic, R. K. Jain, M. G. Bawendi, and D. Fukumura. Multistage nanoparticle delivery system for deep penetration into tumor tissue. Proc. Natl. Acad. Sci. USA 108:2426–2431, 2011.

    Article  PubMed  CAS  Google Scholar 

  42. Wu, J., S. Xu, Q. Long, M. W. Collins, C. S. Konig, G. Zhao, Y. Jiang, and A. R. Padhani. Coupled modeling of blood perfusion in intravascular, interstitial spaces in tumor microvasculature. J. Biomech. 41:996–1004, 2008.

    Article  PubMed  Google Scholar 

  43. Yuan, F., M. Dellian, D. Fukumura, M. Leunig, D. A. Berk, V. P. Torchilin, and R. K. Jain. Vascular permeability in a human tumor xenograft: molecular size dependence and cutoff size. Cancer Res. 55:3752–3756, 1995.

    PubMed  CAS  Google Scholar 

  44. Yuan, F., M. Leunig, S. K. Huang, D. A. Berk, D. Papahadjopoulos, and R. K. Jain. Microvascular permeability and interstitial penetration of sterically stabilized (stealth) liposomes in a human tumor xenograft. Cancer Res. 54:3352–3356, 1994.

    PubMed  CAS  Google Scholar 

  45. Yuan, F., H. A. Salehi, Y. Boucher, U. S. Vasthare, R. F. Tuma, and R. K. Jain. Vascular permeability and microcirculation of gliomas and mammary carcinomas transplanted in rat and mouse cranial windows. Cancer Res. 54:4564–4568, 1994.

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank Dr. Vikash Chauhan for his insightful comments on the manuscript. This work was supported by a Marie-Curie International Reintegration Grant (No. PIRG08-GA-2010-276894), the National Cancer Institute (P01-CA080124, R01-CA126642, R01-CA115767, R01-CA096915, R01-CA085140, R01-CA098706, T32-CA073479, Federal Share Proton Beam Program Income Grant), and a DoD Breast Cancer Research Innovator award (W81XWH-10-1-0016).

Conflict of Interest

R.K.J. received research grants from Dyax, MedImmune and Roche; consultant fees from Dyax, Enlight, Noxxon and SynDevRx; owns equity in Enlight, SynDevRx and XTuit, serves on the Board of Directors of XTuit and Board of Trustees of H&Q Capital Management. No reagents or funding from these companies was used in these studies. Therefore, there is no significant financial or other competing interest in the work. The other authors declare no competing financial interests.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Triantafyllos Stylianopoulos or Rakesh K. Jain.

Additional information

Associate Editor Konstantinos Konstantopoulos oversaw the review of this article.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 287 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stylianopoulos, T., Soteriou, K., Fukumura, D. et al. Cationic Nanoparticles Have Superior Transvascular Flux into Solid Tumors: Insights from a Mathematical Model. Ann Biomed Eng 41, 68–77 (2013). https://doi.org/10.1007/s10439-012-0630-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-012-0630-4

Keywords

Navigation