Skip to main content
Log in

Signature proteins that are distinctive characteristics of Actinobacteria and their subgroups

  • Published:
Antonie van Leeuwenhoek Aims and scope Submit manuscript

Abstract

The Actinobacteria constitute one of the main phyla of Bacteria. Presently, no morphological and very few molecular characteristics are known which can distinguish species of this highly diverse group. In this work, we have analyzed the genomes of four actinobacteria (viz. Mycobacterium leprae TN, Leifsonia xyli subsp. xyli str. CTCB07, Bifidobacterium longum NCC2705 and Thermobifida fusca YX) to search for proteins that are unique to Actinobacteria. Our analyses have identified 233 actinobacteria-specific proteins, homologues of which are generally not present in any other bacteria. These proteins can be grouped as follows: (i) 29 proteins uniquely present in most sequenced actinobacterial genomes; (ii) 6 proteins present in almost all actinobacteria except Bifidobacterium longum and another 37 proteins absent in B. longum and few other species; (iii) 11 proteins which are mainly present in Corynebacterium, Mycobacterium and Nocardia (CMN) subgroup as well as Streptomyces, T. fusca and Frankia sp., but they are not found in Bifidobacterium and Micrococcineae; (iv) 8 proteins that are specific for T. fusca and Streptomyces species, plus 2 proteins also present in the Frankia species; (v) 13 proteins that are specific for the Corynebacterineae or the CMN group; (vi) 14 proteins only found in Mycobacterium and Nocardia; (vii) 24 proteins unique to different Mycobacterium species; (viii) 8 proteins specific to the Micrococcineae; (ix) 85 proteins which are distributed sporadically in actinobacterial species. Additionally, many examples of lateral gene transfer from Actinobacteria to Magnetospirillum magnetotacticum have also been identified. The identified proteins provide novel molecular means for defining and circumscribing the Actinobacteria phylum and a number of subgroups within it. The distribution of these proteins also provides useful information regarding interrelationships among the actinobacterial subgroups. Most of these proteins are of unknown function and studies aimed at understanding their cellular functions should reveal common biochemical and physiological characteristics unique to either all actinobacteria or particular subgroups of them. The identified proteins also provide potential targets for development of drugs that are specific for actinobacteria.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Altschul S.F., Madden T.L., Schaffer A.A., Zhang J.H., Zhang Z., Miller W., Lipman D.J. 1997. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 25:3389–3402

    Article  PubMed  CAS  Google Scholar 

  • Balows A., Trüper H.G., Dworkin M., Harder W., Schleifer K.H. 1992. The Prokaryotes. Springer-Verlag, New York

    Google Scholar 

  • Bazylinski D.A., Frankel R.B. 2004. Magnetosome formation in prokaryotes. Nat. Rev. Microbiol. 2:217–230

    Article  PubMed  CAS  Google Scholar 

  • Belanger A.E., Besra G.S., Ford M.E., Mikusova K., Belisle J.T., Brennan P.J., Inamine J.M. 1996. The embAB genes of Mycobacterium avium encode an arabinosyl transferase involved in cell wall arabinan biosynthesis that is the target for the antimycobacterial drug ethambutol. Proc Natl Acad Sci USA. 93:11919–11924

    Article  PubMed  CAS  Google Scholar 

  • Benson D.R., Silvester W.B., (1993). Biology of Frankia Strains, Actinomycete Symbionts of Actinorhizal Plants. Microbiol Rev. 57:293–319

    PubMed  CAS  Google Scholar 

  • Bentley S.D., Brosch R., Gordon S.V., Hopwood D.A., Cole S.T., (2004). Genomics of Actinobacteria, the high G+C Gram-positive bacteria. In: Fraser C.M., Read T.D., Nelson K.E., (eds) Microbial Genomes. Humana Press, Totowa, NJ, pp. 333–359

    Google Scholar 

  • Bentley S.D., Chater K.F., Cerdeno-Tarraga A.M., Challis G.L., Thomson N.R., James K.D., Harris D.E., Quail M.A., Kieser H., Harper D., Bateman A., Brown S., Chandra G., Chen C.W., Collins M., Cronin A., Fraser A., Goble A., Hidalgo J., Hornsby T., Howarth S., Huang C.H., Kieser T., Larke L., Murphy L., Oliver K., O’Neil S., Rabbinowitsch E., Rajandream M.A., Rutherford K., Rutter S., Seeger K., Saunders D., Sharp S., Squares R., Squares S., Taylor K., Warren T., Wietzorrek A., Woodward J., Barrell B.G., Parkhill J., Hopwood D.A., (2002). Complete genome sequence of the model actinomycete Streptomyces coelicolor A3(2). Nature 417:141–147

    Article  PubMed  Google Scholar 

  • Bentley S.D., Maiwald M., Murphy L.D., Pallen M.J., Yeats C.A., Dover L.G., Norbertczak H.T., Besra G.S., Quail M.A., Harris D.E., von Herbay A., Goble A., Rutter S., Squares R., Squares S., Barrell B.G., Parkhill J., Relman D.A., (2003). Sequencing and analysis of the genome of the Whipple’s disease bacterium Tropheryma whipplei. Lancet 361:637–644

    Article  PubMed  CAS  Google Scholar 

  • Bentley S.D., Parkhill J., (2004). Comparative genomic structure of prokaryotes. Annu. Rev. Genet. 38:771–792

    Article  PubMed  CAS  Google Scholar 

  • Berg S., Starbuck J., Torrelles J.B., Vissa V.D., Crick D.C., Chatterjee D., Brennan P.J., (2005). Roles of conserved proline and glycosyltransferase motifs of embC in biosynthesis of lipoarabinomannan. J. Biol. Chem. 280:5651–5663

    Article  PubMed  CAS  Google Scholar 

  • Boone D.R. 2001. Bergey’s Manual of systematic bacteriology, Springer

  • Brennan P.J. (2003). Structure, function, and biogenesis of the cell wall of Mycobacterium tuberculosis. Tuberculosis 83:91–97

    Article  PubMed  CAS  Google Scholar 

  • Brennan P.J., Nikaido H., (1995). The envelope of mycobacteria. Annu. Rev. Biochem. 64:29–63

    Article  PubMed  CAS  Google Scholar 

  • Bruggemann H., Henne A., Hoster F., Liesegang H., Wiezer A., Strittmatter A., Hujer S., Durre P., Gottschalk G., (2004). The complete genome sequence of Propionibacterium acnes, a commensal of human skin. Science 305:671–673

    Article  PubMed  CAS  Google Scholar 

  • Cerdeno-Tarraga A.M., Efstratiou A., Dover L.G., Holden M.T.G., Pallen M., Bentley S.D., Besra G.S., Churcher C., James K.D., De Zoysa A., Chillingworth T., Cronin A., Dowd L., Feltwell T., Hamlin N., Holroyd S., Jagels K., Moule S., Quail M.A., Rabbinowitsch E., Rutherford K.M., Thomson N.R., Unwin L., Whitehead S., Barrell B.G., Parkhill J., (2003). The complete genome sequence and analysis of Corynebacterium diphtheriae NCTC13129. Nucleic Acids Res. 31:6516–6523

    Article  PubMed  CAS  Google Scholar 

  • Coenye T., Gevers D., de Peer Y.V., Vandamme P., Swings J., (2005). Towards a prokaryotic genomic taxonomy. FEMS Microbiol. Rev. 29:147–167

    Article  PubMed  CAS  Google Scholar 

  • Cole S.T. (2002). Comparative and functional genomics of the Mycobacterium tuberculosis complex. Microbiology 148:2919–2928

    PubMed  CAS  Google Scholar 

  • Cole S.T., Brosch R., Parkhill J., Garnier T., Churcher C., Harris D., Gordon S.V., Eiglmeier K., Gas S., Barry C.E., Tekaia F., Badcock K., Basham D., Brown D., Chillingworth T., Conner R., Davies R., Devlin K., Feltwell T., Gentles S., Hamlin N., Holroyd S., Hornsby T., Jagels K., Krogh A., McLean J., Moule S., Murphy L., Oliver K., Osborne J., Quail M.A., Rajandream M.A., Rogers J., Rutter S., Seeger K., Skelton J., Squares R., Squares S., Sulston J.E., Taylor K., Whitehead S., Barrell B.G., (1998). Deciphering the biology of Mycobacterium tuberculosis from the complete genome sequence (vol 393, pg 537, 1998). Nature 396:190–198

    Article  CAS  Google Scholar 

  • Cole S.T., Eiglmeier K., Parkhill J., James K.D., Thomson N.R., Wheeler P.R., Honore N., Garnier T., Churcher C., Harris D., Mungall K., Basham D., Brown D., Chillingworth T., Connor R., Davies R.M., Devlin K., Duthoy S., Feltwell T., Fraser A., Hamlin N., Holroyd S., Hornsby T., Jagels K., Lacroix C., Maclean J., Moule S., Murphy L., Oliver K., Quail M.A., Rajandream M.A., Rutherford K.M., Rutter S., Seeger K., Simon S., Simmonds M., Skelton J., Squares R., Squares S., Stevens K., Taylor K., Whitehead S., Woodward J.R., Barrell B.G., (2001). Massive gene decay in the leprosy bacillus. Nature 409:1007–1011

    Article  PubMed  CAS  Google Scholar 

  • Collier L., Balows A., Sussman M., (1998). Topley &Wilson’s Microbiology and Microbial Infections, Vol. 2, Systematic Bacteriology. Arnold, London

    Google Scholar 

  • Daffe M., Draper P., (1998). The envelope layers of mycobacteria with reference to their pathogenicity. Adv. Microb. Physiol. 39:131–203

    Article  PubMed  CAS  Google Scholar 

  • Daubin V., Ochman H., (2004). Bacterial genomes as new gene homes: the genealogy of ORFans in E. coli. Genome Res. 14:1036–1042

    Article  PubMed  CAS  Google Scholar 

  • Domenech P., Barry C.E., Cole S.T., (2001). Mycobacterium tuberculosis in the post-genomic age. Curr. Opin. Microbiol. 4:28–34

    Article  PubMed  CAS  Google Scholar 

  • Embley T.M., Stackebrandt E., (1994). The molecular phylogeny and systematics of the actinomycetes. Annu. Rev. Microbiol. 48:257–289

    PubMed  CAS  Google Scholar 

  • Fleischmann R.D., Alland D., Eisen J.A., Carpenter L., White O., Peterson J., Deboy R., Dodson R., Gwinn M., Haft D., Hickey E., Kolonay J.F., Nelson W.C., Umayam L.A., Ermolaeva M., Salzberg S.L., Delcher A., Utterback T., Weidman J., Khouri H., Gill J., Mikula A., Bishai W., Jacobs W.R., Venter J.C., Fraser C.M., (2002). Whole-genome comparison of Mycobacterium tuberculosis clinical and laboratory strains. J. Bacteriol. 184:5479–5490

    Article  PubMed  CAS  Google Scholar 

  • Fraser C.M., Read T.D., Nelson K.E. (eds). (2004). Microbial Genomes. Humana Press, Totowa, NJ

    Google Scholar 

  • Gao B., Gupta R.S., (2005). Conserved indels in protein sequences that are characteristic of the phylum Actinobacteria. Int. J. Syst. Evol. Microbiol. 151:2647–2657

    Google Scholar 

  • Garnier T., Eiglmeier K., Camus J.C., Medina N., Mansoor H., Pryor M., Duthoy S., Grondin S., Lacroix C., Monsempe C., Simon S., Harris B., Atkin R., Doggett J., Mayes R., Keating L., Wheeler P.R., Parkhill J., Barrell B.G., Cole S.T., Gordon S.V., Hewinson R.G., (2003). The complete genome sequence of Mycobacterium bovis. Proc. Natl. Acad. Sci. USA 100:7877–7882

    Article  PubMed  CAS  Google Scholar 

  • Garrity G.M., Holt J.G., (2001). The road map to the manual. In: Boone D.R., Castenholz R.W. (eds) Bergey’s Manual of Systematic Bacteriology. Springer-Verlag, Berlin, pp. 119–166

    Google Scholar 

  • Gogarten J.P., Townsend J.P., (2005). Horizontal gene transfer, genome innovation and evolution. Nat. Rev. Microbiol. 3:679–687

    Article  PubMed  CAS  Google Scholar 

  • Goodfellow M., Williams S.T., (1983). Ecology of Actinomycetes. Annu. Rev. Microbiol. 37:189–216

    Article  PubMed  CAS  Google Scholar 

  • Gordon S.V., Eiglmeier K., Garnier T., Brosch R., Parkhill J., Barrell B., Cole S.T., Hewinson R.G., (2001). Genomics of Mycobacterium bovis. Tuberculosis 81:157–163

    Article  PubMed  CAS  Google Scholar 

  • Griffiths E., Gupta R.S., (2004). Signature sequences in diverse proteins provide evidence for the late divergence of the order Aquificales. Intl Microbiol. 7:41–52

    CAS  Google Scholar 

  • Griffiths E., Petrich A., Gupta R.S., (2005). Conserved indels in essential proteins that are distinctive characteristics of Chlamydiales and provide novel means for their identification. Microbiology 151:2647–2657

    Article  PubMed  CAS  Google Scholar 

  • Griffiths E., Ventresca M.S., Gupta R.S. 2006. BLAST screening of chlamydial genomes to identify signature proteins that are unique for the Chlamydiales, Chlamydiaceae, Chlamydophila and Chlamydia groups of species. BMC Genomics 7:14

    Google Scholar 

  • Gupta R.S. (1998). Protein phylogenies and signature sequences: a reappraisal of evolutionary relationships among archaebacteria, eubacteria, and eukaryotes. Microbiol. Mol. Biol. Rev. 62:1435–1491

    PubMed  CAS  Google Scholar 

  • Gupta R.S. (2000). The phylogeny of Proteobacteria: relationships to other eubacterial phyla and eukaryotes. FEMS Microbiol. Rev. 24:367–402

    Article  PubMed  CAS  Google Scholar 

  • Gupta R.S. (2004). The Phylogeny and Signature Sequences characteristics of Fibrobacters, Chlorobi and Bacteroidetes. Crit. Rev. Microbiol. 30:123–143

    Article  PubMed  CAS  Google Scholar 

  • Gupta R.S. (2005). Protein signatures distinctive of Alpha proteobacteria and its subgroups and a model for Alpha proteobacterial evolution. Crit. Rev. Microbiol. 31:135

    Article  CAS  Google Scholar 

  • Ikeda H., Ishikawa J., Hanamoto A., Shinose M., Kikuchi H., Shiba T., Sakaki Y., Hattori M., Omura S., (2003). Complete genome sequence and comparative analysis of the industrial microorganism Streptomyces avermitilis. Nat. Biotechnol. 21:526–531

    Article  PubMed  Google Scholar 

  • Ishikawa J., Yamashita A., Mikami Y., Hoshino Y., Kurita H., Hotta K., Shiba T., Hattori M., (2004). The complete genomic sequence of Nocardia farcinica IFM 10152. Proc. Natl. Acad. Sci. USA 101:14925–14930

    Article  PubMed  CAS  Google Scholar 

  • Kainth P., Gupta R.S., (2005). Signature proteins that are distinctive of alpha proteobacteria. BMC Genomics 6:94

    Article  PubMed  CAS  Google Scholar 

  • Kalinowski J., Bathe B., Bartels D., Bischoff N., Bott M., Burkovski A., Dusch N., Eggeling L., Eikmanns B.J., Gaigalat L., Goesmann A., Hartmann M., Huthmacher K., Kramer R., Linke B., McHardy A.C., Meyer F., Mockel B., Pfefferle W., Puhler A., Rey D.A., Ruckert C., Rupp O., Sahm H., Wendisch V.F., Wiegrabe I., Tauch A., (2003). The complete Corynebacterium glutamicum ATCC 13032 genome sequence and its impact on the production of L-aspartate-derived amino acids and vitamins. J. Biotechnol. 104:5–25

    Article  PubMed  CAS  Google Scholar 

  • Karlin S., Altschul S.F., (1990). Methods for assessing the statistical significance of molecular sequence features by using general scoring schemes. Proc. Natl. Acad. Sci. USA 87:2264–2268

    Article  PubMed  CAS  Google Scholar 

  • Karlin S., Campbell A.M., Mrázek J. (1998). Comparative DNA analysis across diverse genomes. Annu. Rev. Genet. 32:185–225

    Article  PubMed  CAS  Google Scholar 

  • Lechevalier H.A., Lechevalier M.P., (1967). Biology of Actinomycetes. Annu. Rev. Microbiol. 21:71–100

    Article  PubMed  CAS  Google Scholar 

  • Lerat E., Daubin V., Moran N.A., (2003). From gene trees to organismal phylogeny in prokaryotes: the case of the gamma-proteobacteria. PLoS. Biol. 1:E19

    Article  PubMed  Google Scholar 

  • Ludwig W., Klenk H.-P., (2001). Overview: A phylogenetic backbone and taxonomic framework for prokaryotic systamatics. In: Boone D.R., Castenholz R.W., (eds) Bergey’s Manual of Systematic Bacteriology. Springer-Verlag, Berlin, pp. 49–65

    Google Scholar 

  • Mazumder R., Natale D.A., Murthy S., Thiagarajan R., Wu C.H., (2005). Computational identification of strain-, species- and genus-specific proteins. BMC Bioinform. 6:279

    Article  CAS  Google Scholar 

  • McAlpine J.B., Bachmann B.O., Piraee M., Tremblay S., Alarco A.M., Zazopoulos E., Farnet C.M., (2005). Microbial Genomics as a guide to drug discovery and structural elucidation: ECO-02301, a novel antifungal agent, as an example. J. Nat. Prod. 68:493–496

    Article  PubMed  CAS  Google Scholar 

  • Monteiro-Vitorello C.B., Camargo L.E.A., Van Sluys M.A., Kitajima J.P., Truffi D., do Amaral A.M., Harakava R., de Oliveira J.C.F., Wood D., de Oliveira M.C., Miyaki C., Takita M.A., da Silva A.C.R., Furlan L.R., Carraro D.M., Camarotte G., Almeida N.F., Carrer H., Coutinho L.L., El Dorry H.A., Ferro M.I.T., Gagliardi P.R., Giglioti E., Goldman M.H.S., Goldman G.H., Kimura E.T., Ferro E.S., Kuramae E.E., Lemos E.G.M., Lemos M.V.F., Mauro S.M.Z., Machado M.A., Marino C.L., Menck C.F., Nunes L.R., Oliveira R.C., Pereira G.G., Siqueira W., de Souza A.A., Tsai S.M., Zanca A.S., Simpson A.J.G., Brumbley S.M., Setubal J.C., (2004). The genome sequence of the gram-positive sugarcane pathogen Leifsonia xyli subsp xyli. Mol. Plant Microb. Interact. 17:827–836

    Article  CAS  Google Scholar 

  • Moran N.A., Wernegreen J.J., (2000). Lifestyle evolution in symbiotic bacteria: insights from genomics. Trends Ecol. Evol. 15:321–326

    Article  PubMed  Google Scholar 

  • Morse R., O’Hanlon K., Collins M.D., (2002). Phylogenetic, amino acid content and indel analyses of the beta subunit of DNA-dependent RNA polymerase of gram-positive and gram-negative bacteria. Int. J. Syst. Evol. Microbiol. 52:1477–1484

    Article  PubMed  CAS  Google Scholar 

  • Nishio Y., Nakamura Y., Kawarabayasi Y., Usuda Y., Kimura E., Sugimoto S., Matsui K., Yamagishi A., Kikuchi H., Ikeo K., Gojobori T., (2003). Comparative complete genome sequence analysis of the amino acid replacements responsible for the thermostability of Corynebacterium efficiens. Genome Res. 13:1572–1579

    Article  PubMed  CAS  Google Scholar 

  • Pedulla M.L., Ford M.E., Houtz J.M., Karthikeyan T., Wadsworth C., Lewis J.A., Jacobs-Sera D., Falbo J., Gross J., Pannunzio N.R., Brucker W., Kumar V., Kandasamy J., Keenan L., Bardarov S., Kriakov J., Lawrence J.G., Jacobs W.R., Hendrix R.W., Hatfull G.F., (2003). Origins of highly mosaic mycobacteriophage genomes. Cell 113:171–182

    Article  PubMed  CAS  Google Scholar 

  • Puech V., Chami M., Lemassu A., Laneelle M.A., Schiffler B., Gounon P., Bayan N., Benz R., Daffe M., (2001). Structure of the cell envelope of corynebacteria: importance of the non-covalently bound lipids in the formation of the cell wall permeability barrier and fracture plane. Microbiology 147:1365–1382

    PubMed  CAS  Google Scholar 

  • Raoult D., Ogata H., Audic S., Robert C., Suhre K., Drancourt M., Claverie J.M., (2003). Tropheryma whipplei twist: a human pathogenic Actinobacteria with a reduced genome. Genome Res. 13:1800–1809

    PubMed  CAS  Google Scholar 

  • Ravel J., DiRuggiero J., Robb F.T., Hill R.T., (2000). Cloning and sequence analysis of the mercury resistance operon of Streptomyces sp. strain CHR28 reveals a novel putative second regulatory gene. J. Bacteriol. 182:2345–2349

    Article  PubMed  CAS  Google Scholar 

  • Roller C., Ludwig W., Schleifer K.H. (1992). Gram-positive bacteria with a high DNA G+C content are characterized by a common insertion within their 23S rRNA genes. J. Gen. Microbiol. 138:167–175

    Google Scholar 

  • Rother D., Mattes R., Altenbuchner J., (1999). Purification and characterization of MerR, the regulator of the broad-spectrum mercury resistance genes in Streptomyces lividans 1326. Mol. Gen. Genet. 262:154–162

    Article  PubMed  CAS  Google Scholar 

  • Schell M.A., Karmirantzou M., Snel B., Vilanova D., Berger B., Pessi G., Zwahlen M.C., Desiere F., Bork P., Delley M., Pridmore R.D., Arigoni F., (2002). The genome sequence of Bifidobacterium longum reflects its adaptation to the human gastrointestinal tract. Proc. Natl. Acad. Sci. USA 99:14422–14427

    Article  PubMed  CAS  Google Scholar 

  • Schorey J.S., Li Q.L., Mccourt D.W., Bongmastek M., Clarkcurtiss J.E., Ratliff T.L., Brown E.J., (1995). A mycobacterium-leprae gene encoding a fibronectin-binding protein is used for efficient invasion of epithelial-cells and schwann-cells. Infect. Immun. 63:2652–2657

    PubMed  CAS  Google Scholar 

  • Soliveri J.A., Gomez J., Bishai W.R., Chater K.F., (2000). Multiple paralogous genes related to the Streptomyces coelicolor developmental regulatory gene whiB are present in Streptomyces and other actinomycetes. Microbiol.-Uk 146:333–343

    CAS  Google Scholar 

  • Stackebrandt E., Rainey F.A., WardRainey N.L., (1997). Proposal for a new hierarchic classification system, Actinobacteria classis nov. Int. J. Syst. Bacteriol. 47:479–491

    Article  Google Scholar 

  • Stackebrandt E., Schumann P., (2000). Introduction to the taxonomy of actinobacteria. In: Dworkin M., et al. (eds) The Prokaryotes: An Evolving Electronic Resource for the Microbiological Community. Springer-Verlag, New York, http://www.141.150.157.117:8080/prokPUB/chaprender/jsp/showchap.jsp?chapnum=291

  • Sutcliffe I.C. (1998). Cell envelope composition and organisation in the genus Rhodococcus. Antonie van Leeuwenhoek 74: 49–58

    Article  PubMed  CAS  Google Scholar 

  • Sutcliffe I.C., Harrington D.J., (2004). Lipoproteins of Mycobacterium tuberculosis: an abundant and functionally diverse class of cell envelope components. FEMS Microbiol. Rev. 28:645–659

    Article  PubMed  CAS  Google Scholar 

  • Sutcliffe I.C., Russell R.R., (1995). Lipoproteins of gram-positive bacteria. J. Bacteriol. 177:1123–1128

    PubMed  CAS  Google Scholar 

  • Tauch A., Kaiser O., Hain T., Goesmann A., Weisshaar B., Albersmeier A., Bekel T., Bischoff N., Brune I., Chakraborty T., Kalinowski J., Meyer F., Rupp O., Schneiker S., Viehoever P., Puhler A., (2005). Complete genome sequence and analysis of the multiresistant nosocomial pathogen Corynebacterium jeikeium K411, a lipid-requiring bacterium of the human skin flora. J. Bacteriol. 187:4671–4682

    Article  PubMed  CAS  Google Scholar 

  • Ueda K., Ohno M., Yamamoto K., Nara H., Mori Y., Shimada M., Hayashi M., Oida H., Terashima Y., Nagata M., Beppu T., (2001). Distribution and diversity of symbiotic thermophiles, Symbiobacterium thermophilum and related bacteria, in natural environments. Appl. Environ. Microbiol. 67:3779–3784

    Article  PubMed  CAS  Google Scholar 

  • Ueda K., Yamashita A., Ishikawa J., Shimada M., Watsuji T., Morimura K., Ikeda H., Hattori M., Beppu T., (2004). Genome sequence of Symbiobacterium thermophilum, an uncultivable bacterium that depends on microbial commensalism. Nucleic Acids Res. 32:4937–4944

    Article  PubMed  CAS  Google Scholar 

  • Yang Z. (2005). The power of phylogenetic comparison in revealing protein function. Proc. Natl. Acad. Sci. USA 102:3179–3180

    Article  PubMed  CAS  Google Scholar 

  • Zazopoulos E., Huang K.X., Staffa A., Liu W., Bachmann B.O., Nonaka K., Ahlert J., Thorson J.S., Shen B., Farnet C.M., (2003). A genomics-guided approach for discovering and expressing cryptic metabolic pathways. Nat. Biotechnol. 21:187–190

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by research grants from the National Science and Engineering Research Council of Canada and the Canadian Institute of Health Research. We thank the editor and two anonymous reviewers for various helpful suggestions toward improvement of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Radhey S. Gupta.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gao, B., Paramanathan, R. & Gupta, R. Signature proteins that are distinctive characteristics of Actinobacteria and their subgroups. Antonie Van Leeuwenhoek 90, 69–91 (2006). https://doi.org/10.1007/s10482-006-9061-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10482-006-9061-2

Keywords

Navigation