Skip to main content
Log in

Friends and foes: streptomycetes as modulators of plant disease and symbiosis

  • Review
  • Published:
Antonie van Leeuwenhoek Aims and scope Submit manuscript

Abstract

The ecological role of soil streptomycetes within the plant root environment is currently gaining increased attention. This review describes our recent advances in elucidating the complex interactions between streptomycetes, plants, pathogenic and symbiotic microorganisms. Streptomycetes play diverse roles in plant-associated microbial communities. Some act as biocontrol agents, inhibiting plant interactions with pathogenic organisms. Owing to the antagonistic properties of streptomycetes, they exert a selective pressure on soil microbes, which may not always be for plant benefit. Others promote the formation of symbioses between plant roots and microbes, and this is in part due to their direct positive influence on the symbiotic partner, expressed as, e.g., promotion of hyphal elongation of symbiotic fungi. Recently, streptomycetes have been identified as modulators of plant defence. By repressing plant responses to pathogens they facilitate root colonisation with pathogenic fungi. In contrast, other strains induce local and systemic resistance against pathogens or enhance plant growth. In conclusion, while streptomycetes have a clear potential of acting as biocontrol agents, care has to be taken to avoid strains that select for virulent pathogens or enhance disease development. We argue towards the use of an integrated screening approach in the search for efficient biocontrol agents, including assays on in vitro antagonism, plant growth, and disease suppression.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  • Abdel-Fattah GM, Mohamedin AH (2000) Interactions between a vesicular–arbuscular mycorrhizal fungus (Glomus intraradices) and Streptomyces coelicolor and their effects on sorghum plants grown in soil amended with chitin of brawn scales. Biol Fertil Soils 32:401–409

    Article  Google Scholar 

  • Ames BN (1989) Mycorrhiza development in onion in response to chitin-decomposing actinomycetes. New Phytol 112:423–427

    Article  Google Scholar 

  • Ames RN, Reid CPP, Ingham ER (1984) Rhizosphere bacterial population responses to root colonization by a vesicular–arbuscular mycorrhizal fungus. New Phytol 96:555–563

    Article  Google Scholar 

  • Asiegbu F, Daniel G, Johansson M (1993) Studies on the infection of Norway spruce roots by Heterobasidion annosum. Can J Bot 71:1552–1561

    Article  Google Scholar 

  • Bol JF, Linthorst HJM, Cornelissen BJC (1990) Plant pathogenesis-related proteins induced by virus infection. Annu Rev Phytopathol 28:113–138

    Article  CAS  Google Scholar 

  • Conn VM, Walker AR, Franco CM (2008) Endophytic actinobacteria induce defense pathways in Arabidopsis thaliana. Mol Plant Microbe Interact 21:208–218

    Article  PubMed  CAS  Google Scholar 

  • Conrath U, Pieterse CMJ, Mauch-Mani B (2002) Priming in plant–pathogen interactions. Trends Plant Sci 7:210–216

    Article  PubMed  CAS  Google Scholar 

  • Coombs JT, Franco CM (2003) Isolation and identification of actinobacteria from surface-sterilized wheat roots. Appl Environ Microbiol 69:5603–5608

    Article  PubMed  CAS  Google Scholar 

  • Crawford DL, Lynch JM, Whipps JM, Ousley MA (1993) Isolation and characterization of actinomycete antagonists of a fungal root pathogen. Appl Environ Microbiol 59:3899–3905

    PubMed  Google Scholar 

  • Davelos AL, Kinkel LL, Samac DA (2004) Spatial variation in frequency and intensity of antibiotic interactions among Streptomycetes from prairie soil. Appl Environ Microbiol 70:1051–1058

    Article  PubMed  CAS  Google Scholar 

  • Dewey FM, Li Wong Y, Seery R, Hollins TW, Gurr SJ (1999) Bacteria associated with Stagonospora (Septoria) nodorum increase pathogenicity of the fungus. New Phytol 144:489–497

    Article  Google Scholar 

  • El-Tarabily KA, Sivasithamparam K (2006) Non-streptomycete actinomycetes as biocontrol agents of soil-borne fungal plant pathogens and as plant growth promoters. Soil Biol Biochem 38:1505–1520

    Article  CAS  Google Scholar 

  • Emmert EAB, Handelsman J (1999) Biocontrol of plant disease: a (Gram+) positive perspective. FEMS Microbiol Lett 171:1–9

    Article  PubMed  CAS  Google Scholar 

  • Enyedi AJ, Yalpani N, Silverman P, Raskin I (1992) Signal molecules in systemic plant resistance to pathogens and pests. Cell 70:879–886

    Article  PubMed  CAS  Google Scholar 

  • Errakhi R, Bouteau F, Lebrihi A, Barakate M (2007) Evidences of biological control capacities of Streptomyces spp. against Sclerotium rolfsii responsible for damping-off disease in sugar beet (Beta vulgaris L.). World J Microbiol Biotechnol 23:1503–1509

    Article  CAS  Google Scholar 

  • Fossdal CG, Sharma P, Lönneborg A (2001) Isolation of the first putative peroxidase cDNA from a conifer and the local and systemic accumulation of related proteins upon pathogen infection. Plant Mol Biol 47:423–435

    Article  PubMed  CAS  Google Scholar 

  • Frey-Klett P, Garbaye J, Tarkka M (2007) The mycorrhiza helper bacteria revisited. New Phytol 176:22–36

    Article  PubMed  CAS  Google Scholar 

  • Garbaye J (1994) Helper bacteria: a new dimension to the mycorrhizal symbiosis. New Phytol 128:197–210

    Article  Google Scholar 

  • Glazebrook J (2005) Contrasting mechanisms of defense against biotrophic and necrotrophic pathogens. Annu Rev Phytopathol 43:205–227

    Article  PubMed  CAS  Google Scholar 

  • Gregor AK, Klubek B, Varsa EC (2003) Identification and use of actinomycetes for enhanced nodulation of soybean co-inoculated with Bradyrhizobium japonicum. Can J Microbiol 49:483–491

    Article  PubMed  CAS  Google Scholar 

  • Hasegawa S, Meguro A, Nishimura T, Kunoh H (2004) Drought tolerance of tissue-cultured seedlings of mountain laurel (Kalmia latifolia L.) induced by an endophytic actinomycete. I. Enhancement of osmotic pressure in leaf cells. Actinomycetologica 18:43–47

    Article  Google Scholar 

  • Hietala AM, Kvaalen H, Schmidt A, Johnk N, Solheim H, Fossdal CG (2004) Temporal and spatial profiles of chitinase expression by Norway spruce in response to bark colonization by Heterobasidion annosum. Appl Environ Microbiol 70:3948–3953

    Article  PubMed  CAS  Google Scholar 

  • Janssen PH (2006) Identifying the dominant soil bacterial taxa in libraries of 16S rRNA and 16S rRNA genes. Appl Environ Microbiol 72:1719–1728

    Article  PubMed  CAS  Google Scholar 

  • Keller S, Schneider K, Sussmuth RD (2006) Structure elucidation of auxofuran, a metabolite involved in stimulating growth of fly agaric, produced by the mycorrhiza helper bacterium Streptomyces AcH 505. J AntibiotP (Tokyo) 59:801–803

    CAS  Google Scholar 

  • Kuc BN (1982) Induced immunity to plant disease. Bioscience 32:54–860

    Article  Google Scholar 

  • Lehr NA, Schrey SD, Bauer R, Hampp R, Tarkka MT (2007) Suppression of plant defence response by a mycorrhiza helper bacterium. New Phytol 174:892–903

    Article  PubMed  CAS  Google Scholar 

  • Lehr NA, Schrey SD, Hampp R, Tarkka MT (2008) Root inoculation with a forest soil streptomycete leads to locally and systemically increased resistance against phytopathogens in Norway spruce. New Phytol 177:965–976

    Article  PubMed  Google Scholar 

  • Loria R, Kers J, Joshi M (2006) Evolution of plant pathogenicity in Streptomyces. Annu Rev Phytopathol 44:469–487

    Article  PubMed  CAS  Google Scholar 

  • Maier A (2003) Einfluss bakterieller Stoffwechselprodukte auf Wachstum und Proteom des Ektomykorrhizapilzes Amanita muscaria. PhD Thesis, University of Tübingen, Germany

  • Maier A, Riedlinger J, Fiedler H-P, Hampp R (2004) Actinomycetales bacteria from a spruce stand: characterization and effects on growth of root symbiotic, and plant parasitic soil fungi in dual culture. Mycol Progr 3:129–136

    Article  Google Scholar 

  • Melotto M, Underwood W, Koczan J, Nomura K, He SY (2006) Plant stomata function in innate immunity against bacterial invasion. Cell 126:969–980

    Article  PubMed  CAS  Google Scholar 

  • Mosse B (1962) The establishment of vesicular–arbuscular mycorrhiza under aseptic conditions. J Gen Microbiol 27:509–520

    PubMed  CAS  Google Scholar 

  • Park SW, Maimoyo E, Kumar D, Mosher S, Klessig DF (2007) Methyl salicylate is a critical mobile signal for plant systemic acquired resistance. Science 318:113–116

    Article  PubMed  CAS  Google Scholar 

  • Patel JJ (1974) Antagonism of actinomycetes against rhizobia. Plant Soil 41:395–402

    Article  Google Scholar 

  • Pieterse CMJ, van Wees SCM, Hoffland E, van Pelt JA, van Loon LC (1996) Systemic resistance in Arabidopsis induced by biocontrol bacteria is independent of salicylic acid accumulation and pathogenesis-related gene expression. Plant Cell 8:1225–1237

    Article  PubMed  CAS  Google Scholar 

  • Poole EJ, Bending GD, Whipps JM, Read DJ (2001) Bacteria associated with Pinus sylvestris–Lactarius rufus ectomycorrhizas and their effects on mycorrhiza formation in vitro. New Phytol 151:743–751

    Article  Google Scholar 

  • Rangarajan M, David Ravindran A, Hariharan K (1984) Occurrence of a lysogenic Streptomyces sp. on the nodule surface of black gram (Vigna mungo (L.) Hepper). Appl Environ Microbiol 48:232–233

    PubMed  Google Scholar 

  • Raudaskoski M, Pardo A, Tarkka M, Gorfer M, Hanif M, Laitiainen E (2001) Small GTPases, cytoskeleton and signal transduction in filamentous homobasidiomycetes. In: Geitman A, Cresti M, Heath IB (eds) Cell biology of plant and fungal tip growth. NATO science series I: life and behavioural sciences, vol 328. IOS-Press, Amsterdam, The Netherlands, pp 123–136

    Google Scholar 

  • Riedlinger J, Schrey SD, Tarkka MT, Hampp R, Kapur M, Fiedler H-P (2006) Auxofuran, a novel metabolite stimulating growth of fly agaric, produced by the mycorrhiza helper bacterium Streptomyces AcH 505. Appl Environ Microbiol 72:3550–3557

    Article  PubMed  CAS  Google Scholar 

  • Ross AF (1961) Systemic acquired resistance induced by localised virus infections in plants. Virology 14:340–358

    Article  PubMed  CAS  Google Scholar 

  • Sardi P, Saracchi M, Quaroni S, Petrolini B, Borgonovi GE, Merli S (1992) Isolation of endophytic Streptomyces strains from surface-sterilized roots. Appl Environ Microbiol 58:2691–2693

    PubMed  Google Scholar 

  • Schrey SD, Schellhammer M, Ecke M, Hampp R, Tarkka MT (2005) Mycorrhiza helper bacterium Streptomyces AcH 505 induces differential gene expression in the ectomycorrhizal fungus Amanita muscaria. New Phytol 168:205–216

    Article  PubMed  CAS  Google Scholar 

  • Schrey SD, Salo V, Raudaskoski M, Hampp R, Nehls U, Tarkka MT (2007) Interaction with mycorrhiza helper bacterium Streptomyces sp. AcH 505 modifies organisation of actin cytoskeleton in the ectomycorrhizal fungus Amanita muscaria (fly agaric). Curr Genet 52:77–85

    Article  PubMed  CAS  Google Scholar 

  • Sellstedt A, Normand P, Dawson J (2007) Frankia—the friendly bacteria—infecting actinorhizal plants. Physiol Plant 130:315–317 (theme issue in Physiologia Plantarum)

    Article  CAS  Google Scholar 

  • Shimizu M, Suzuki T, Mogami O, Kunoh H (2005) Disease resistance of plants induced by endophytic actinomycetes. In: Tsuyumu S, Leach JE, Shiraishi T, Wolpert T (eds) Genomic and genetic analysis of plant parasitism and defense. APS Press, St. Paul, pp 292–293

    Google Scholar 

  • Smith SE, Read DJ (1997) Mycorrhizal symbiosis, 2nd edn. Academic Press, Cambridge, UK, pp 1–605

    Google Scholar 

  • Solans M (2007) Discaria trinervisFrankia symbiosis promotion by saprophytic actinomycetes. J Basic Microbiol 47:243–250

    Article  PubMed  Google Scholar 

  • Suzuki T, Shimizu M, Meguro A, Hasegawa S, Nishimura T, Kunoh H (2004) Visualization of Infection of an endophytic actinomycete Streptomyces galbus in tissue-cultured Rhododendron. Actinomycetologica 19:7–12

    Google Scholar 

  • Tokala RK, Strap JL, Jung CM, Crawford DL, Salove MH, Deobald LA, Bailey JF, Morra MJ (2002) Novel plant–microbe rhizosphere interaction involving Streptomyces lydicus WYEC108 and the pea plant (Pisum sativum). Appl Environ Microbiol 68:2161–2171

    Article  PubMed  CAS  Google Scholar 

  • van Loon LC, Pieterse CM (2006) Significance of inducible defense-related proteins in infected plants. Annu Rev Phytopathol 44:135–162

    Article  PubMed  Google Scholar 

  • van Loon LC, Bakker PAHM, Pieterse CMJ (1998) Systemic resistance induced by rhizosphere bacteria. Annu Rev Phytopathol 36:453–483

    Article  PubMed  Google Scholar 

  • Verhagen B, Glazebrook J, Zhu T, Chang H-S, van Loon LC, Pieterse CMJ (2004) The transcriptome of rhizobacteria-induced systemic resistance in Arabidopsis. Mol Plant Microbe Interact 17:895–908

    Article  PubMed  CAS  Google Scholar 

  • Weller DM, Raaijmakers JM, Gardener BB, Thomashow LS (2002) Microbial populations responsible for specific soil suppressiveness to plant pathogens. Annu Rev Phytopathol 40:309–348

    Article  PubMed  CAS  Google Scholar 

  • Xiao K, Samac DA, Kinkel LL (2002) Biological control of Phytophthora root rots on alfalfa and soybean with Streptomyces. Biol Control 23:285–295

    Article  CAS  Google Scholar 

  • Yuan WM, Crawford DL (1995) Characterization of Streptomyces lydicus WYEC108 as a potential biocontrol agent against fungal root and seed rots. Appl Environ Microbiol 61:3119–3128

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The main research in the authors’ laboratory has been due to the experimental and intellectual efforts of Nina Lehr, Margret Ecke, Hans-Peter Fiedler, Julia Riedlinger, Dirk Schulz, Robert Bauer and Rüdiger Hampp. Research has been supported by the German Science Foundation. The authors would like to thank Iain Sutcliffe for the kind invitation to write this review.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Silvia D. Schrey.

Additional information

Both authors contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schrey, S.D., Tarkka, M.T. Friends and foes: streptomycetes as modulators of plant disease and symbiosis. Antonie van Leeuwenhoek 94, 11–19 (2008). https://doi.org/10.1007/s10482-008-9241-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10482-008-9241-3

Keywords

Navigation