Skip to main content
Log in

An Rhs-like genetic element is involved in bacteriocin production by Pseudomonas savastanoi pv. savastanoi

  • Original Paper
  • Published:
Antonie van Leeuwenhoek Aims and scope Submit manuscript

Abstract

The main aim of this work was the identification of genetic determinants involved in bacteriocin production by strain ITM317 of Pseudomonas savastanoi pv. savastanoi, besides bacteriocin characterization. The bacteriocin was observed to be a heat-sensitive, high molecular weight proteinaceous compound. We identified a transposon (Tn5)-induced mutant which had lost its ability to produce the bacteriocin. The Tn5 insertion’s responsibility for the above mutated phenotype was demonstrated by marker-exchange mutagenesis. An EcoRI DNA fragment, corresponding to the EcoRI Tn5-containing fragment of the mutant, was also cloned from the wild-type strain, and its introduction into the mutant complemented the mutation. Moreover, that fragment enabled bacteriocin production by P. s. pv. savastanoi ITM302, a strain not previously capable of doing so. DNA sequence analysis revealed that Tn5 insertion occurred in the mutant within a large ORF encoding a protein which showed similarity with proteins from the Rhs family. The DNA region including that ORF showed features which have been considered typical of the Rhs genetic elements previously identified in other bacteria but whose function is as yet unclear. The results of this study for the first time identify an Rhs-like element in P. s. pv. savastanoi, and for the first time indicate that an Rhs element is involved in bacteriocin production, also suggesting this possible function for Rhs genetic elements previously characterized in other bacteria.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

Ap:

Ampicillin

Bact+ :

Able to produce the bacteriocin

Bact :

Unable to produce the bacteriocin

Cm:

Chloramphenicol

Gm:

Gentamicin

Km:

Kanamycin

M.E.:

Marker exchange mutagenesis

r :

Resistance

Tc:

Tetracycline

References

  • Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402

    Article  CAS  PubMed  Google Scholar 

  • Berg DE (1989) Transposon Tn5. In: Berg DE, Howe M (eds) Mobile DNA. American Society for Microbiology, Washington, pp 185–210

    Google Scholar 

  • Caponero A, Contesini AM, Iacobellis NS (1995) Population diversity of Pseudomonas syringae subsp. savastanoi on olive and oleander. Plant Pathol 44:848–855

    Article  Google Scholar 

  • Feulner G, Gray JA, Kirschman JA, Lehner AF, Sadosky AB, Vlazny DA, Zhang J, Zhao S, Hill C (1990) Structure of the rhsA locus from Escherichia coli K-12 and comparison of rhsA with other members of the rhs multigene family. J Bacteriol 172:446–456

    CAS  PubMed  Google Scholar 

  • Hansen JB, Olsen RH (1978) Isolation of large bacterial plasmids and characterization of the P2 incompatibility group plasmids pMG1 and pMG5. J Bacteriol 135:227–238

    CAS  PubMed  Google Scholar 

  • Hill CW (1999) Large genomic sequence repetitions in bacteria: lessons from rRNA operons and Rhs elements. Res Microbiol 150:665–674

    Article  CAS  PubMed  Google Scholar 

  • Hill CW, Sandt CH, Vlazny DA (1994) Rhs element of Escherichia coli: a family of genetic composites each encoding a large mosaic protein. Mol Microbiol 12:865–871

    Article  CAS  PubMed  Google Scholar 

  • Holtsmark I, Eijsink VGH, Brurberg MB (2008) Bacteriocins from plant pathogenic bacteria. FEMS Microbiol Lett 280:1–7

    Article  CAS  PubMed  Google Scholar 

  • Iacobellis NS, Contesini AM, Surico G (1995) Bacteriocin production by Pseudomonas syringae subsp. savastanoi. Phytopathol Mediterr 34:15–22

    Google Scholar 

  • Iacobellis NS, Caponero A, Evidente A (1998) Characterization of Pseudomonas syringae ssp savastanoi strains isolated from ash. Plant Pathol 47:73–83

    Article  CAS  Google Scholar 

  • Jackson AP, Thomas GH, Parkhill J, Thomson NR (2009) Evolutionary diversification of an ancient gene family (rhs) through C-terminal displacement. BMC Genomics 10:584–599

    Article  PubMed  Google Scholar 

  • Jones JDG, Gutterson N (1987) An efficient mobilizable cosmid vector, pRK7813, and its use in a rapid method for marker exchange in Pseudomonas fluorescens strain HV37a. Gene 61:299–306

    Article  CAS  PubMed  Google Scholar 

  • Keen NT, Shen H, Cooksey DA (1992) Introduction of cloned DNA into plant pathogenic bacteria. In: Gurr SJ, McPherson MJ, Bowles DJ (eds) Molecular plant pathology, vol 1. IRL Press at Oxford University Press, New York, pp 45–50

    Google Scholar 

  • King EO, Ward MK, Raney DE (1954) Two simple media for the demonstration of pyocyanin and fluorescin. J Lab Clin Med 44:301–307

    CAS  PubMed  Google Scholar 

  • Kovach ME, Elzer PH, Hill DS, Robertson GT, Farris MA, Roop RM II, Peterson KM (1995) Four new derivatives of the broad-host-range cloning vector pBBR1MCS, carrying different antibiotic-resistance cassettes. Gene 166:175–176

    Article  CAS  PubMed  Google Scholar 

  • Lavermicocca P, Lonigro SL, Evidente A, Andolfi A (1999) Bacteriocin production by Pseudomonas syringae pv. ciccaronei NCPPB2355. Isolation and partial characterization of the antimicrobial compound. J Appl Microbiol 86:257–265

    Article  CAS  Google Scholar 

  • Lavermicocca P, Lonigro SL, Valerio F, Evidente A, Visconti A (2002) Reduction of olive knot disease by a bacteriocin from Pseudomonas syringae pv. ciccaronei. Appl Environ Microbiol 68:1403–1407

    Article  CAS  PubMed  Google Scholar 

  • Lin RJ, Capage M, Hill CW (1984) A repetitive DNA sequence, rhs, responsible for duplications within the Escherichia coli K-12 chromosome. J Mol Biol 177:1–18

    Article  CAS  PubMed  Google Scholar 

  • McNulty C, Thompson J, Barrett B, Lord L, Andersen C, Roberts IS (2006) The cell surface expression of group 2 capsular polysaccharides in Escherichia coli: the role of KpsD RhsA and a multiprotein complex at the pole of the cell. Mol Microbiol 59:907–922

    Article  CAS  PubMed  Google Scholar 

  • Michel-Briand Y, Bausse C (2002) The pyocins of Pseudomonas aeruginosa. Biochimie 84:499–510

    Article  CAS  PubMed  Google Scholar 

  • Miller JH (1972) Experiments in molecular genetics. Cold Spring Harbor Laboratory Press, Cold Spring Harbor

    Google Scholar 

  • Mota-Meira M, LaPointe G, Lacroix C, Lavoie MC (2000) MICs of mutacin B-Ny266, nisin A, vancomycin, and oxacillin against bacterial pathogens. Antimicrob Agents Chemother 44:24–29

    Article  CAS  PubMed  Google Scholar 

  • Murillo J, Shen H, Gerhold D, Sharma A, Cooksey DA, Keen NT (1994) Characterization of pPT23B, the plasmid involved in syringolide production by Pseudomonas syringae pv. tomato PT23. Plasmid 31:275–287

    Article  CAS  PubMed  Google Scholar 

  • Petersen L, Bollback JP, Dimmic M, Hubisz M, Nielsen R (2007) Genes under positive selection in Escherichia coli. Genome Res 17:1336–1343

    Article  CAS  PubMed  Google Scholar 

  • Pugsley AP, Oudega B (1987) Methods for studying colicins and their plasmids. In: Hardy KG (ed) Plasmids, a practical approach. IRL Press, Oxford, pp 105–161

    Google Scholar 

  • Rich JJ, Willis DK (1990) A single oligonucleotide can be used to rapidly isolate DNA sequences flanking a transposon Tn5 insertion by the polymerase chain reaction. Nucleic Acids Res 18:6673–6676

    Article  CAS  PubMed  Google Scholar 

  • Riley MA, Wertz JE (2002) Bacteriocins: evolution, ecology, and application. Annu Rev Microbiol 56:117–137

    Article  CAS  PubMed  Google Scholar 

  • Roh E, Heu S, Moon E (2008) Genus-specific distribution and pathovar-specific variation of the glycinecin R gene homologs in Xanthomonas genomes. J Microbiol 46:681–686

    Article  CAS  PubMed  Google Scholar 

  • Sambrook J, Russell DW (2001) Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor

    Google Scholar 

  • Selvaraj G, Iyer VN (1983) Suicide plasmid vehicles for insertion mutagenesis in Rhizobium meliloti and related bacteria. J Bacteriol 156:1292–1300

    CAS  PubMed  Google Scholar 

  • Sisto A, Morea M, Zaccaro F, Palumbo G, Iacobellis NS (1999) Isolation and characterization of Pseudomonas syringae subsp. savastanoi mutants defective in hypersensitive response elicitation and pathogenicity. J Phytopathol 147:321–330

    Article  Google Scholar 

  • Sisto A, Cipriani MG, Tegli S, Cerboneschi M, Stea G, Santilli E (2007) Genetic characterization by fluorescent AFLP of Pseudomonas savastanoi pv. savastanoi strains isolated from different host species. Plant Pathol 56:366–372

    Article  CAS  Google Scholar 

  • Smidt ML, Vidaver AK (1986) Isolation and characterization of syringacin W-1, a bacteriocin produced by Pseudomonas syringae pv. syringae. Can J Microbiol 32:231–236

    Article  CAS  Google Scholar 

  • Surico G, Iacobellis NS, Sisto A (1985) Studies on the role of indole-3-acetic acid and cytokinins in the formation of knots on olive and oleander plants by Pseudomonas syringae pv. savastanoi. Physiol Plant Pathol 26:309–320

    Article  CAS  Google Scholar 

  • van Diemen PM, Dziva F, Stevens MP, Wallis TS (2005) Identification of enterohemorrhagic Escherichia coli O26: H-genes required for intestinal colonization in calves. Infect Immun 73:1735–1743

    Article  PubMed  Google Scholar 

  • Vidaver AK, Mathys ML, Thomas ME, Schuster ML (1972) Bacteriocins of the phytopathogens Pseudomonas syringae, P. glycinea, and P. phaseolicola. Can J Microbiol 18:705–713

    Article  CAS  PubMed  Google Scholar 

  • Wang YD, Zhao S, Hill CW (1998) Rhs elements comprise three subfamilies which diverged prior to acquisition by Escherichia coli. J Bacteriol 16:4102–4110

    Google Scholar 

  • Woolley DW, Schaffner G, Broun AC (1955) Studies on the structure of the phytopathogenic toxin of Pseudomonas tabaci. J Biol Chem 215:485–493

    CAS  PubMed  Google Scholar 

  • Young JM, Saddler GS, Takikawa Y, De Boer SH, Vauterin L, Gardan L, Gvozdyak RI, Stead DE (1996) Names of plant pathogenic bacteria 1864–1995. Rev Plant Pathol 75:721–763

    Google Scholar 

Download references

Acknowledgments

We wish to thank D. K. Willis, R. W. Jackson and J. Murillo for generously providing plasmid pRK7813, plasmid pBBR1MCS-5, and P. s. pv. tomato strain PT 23, respectively. We also thank G. Stea for his technical assistance in DNA sequencing.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Angelo Sisto.

Additional information

The GenBank accession number for the sequence reported in this paper is GQ259959.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sisto, A., Cipriani, M.G., Morea, M. et al. An Rhs-like genetic element is involved in bacteriocin production by Pseudomonas savastanoi pv. savastanoi . Antonie van Leeuwenhoek 98, 505–517 (2010). https://doi.org/10.1007/s10482-010-9468-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10482-010-9468-7

Keywords

Navigation