Skip to main content
Log in

Bd oxidase homologue of photosynthetic purple sulfur bacterium Allochromatium vinosum is co-transcribed with a nitrogen fixation related gene

  • Original Paper
  • Published:
Antonie van Leeuwenhoek Aims and scope Submit manuscript

Abstract

Purple sulfur bacteria, which are known to be the most ancient among anoxygenic phototrophs, play an important role in the global sulfur cycle. Allochromatium vinosum oxidizes reduced sulfur compounds such as hydrogen sulfide, elemental sulfur and thiosulfide. At low oxygen concentrations, A. vinosum can grow chemotrophically using oxygen as the terminal electron acceptor. Being also a nitrogen fixer, A. vinosum is faced with the paradox of co-existence of aerobic metabolism and nitrogen fixation. Due to growth difficulties, only a few studies have dealt with the aerobic metabolism of the organism and, until now, there has been no information about the genes involved in the respiratory metabolism of purple sulfur bacteria. In this article we show the first terminal oxidase gene for A. vinosum. The presence of a Bd type of quinol oxidase is necessary to protect nitrogenases against the inhibitory effects of oxygen. In this case, a nitrogen fixation related gene is part of the cyd operon and this gene is co-transcribed with cydAB genes. Bd oxidase of A. vinosum may be the earliest form of oxidase where the function of the enzyme is to scavenge the contaminant oxygen during nitrogen fixation. This may be an important clue about the early evolution of oxygenic photosynthesis, perhaps as a protective mechanism for nitrogen fixation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Anantharaman V, Koonin EV, Aravinda L (2001) Regulatory potential, phyletic distribution and evolution of ancient, intracellular small-molecule-binding domains. J Mol Biol 307:1271–1292

    Article  CAS  PubMed  Google Scholar 

  • Aykanat T (2003) Cloning of the bd oxidase gene from purple sulfur bacterium Allochromatium vinosum. M.Sc. Thesis, Istanbul Technical University

  • Aykanat T, Dincturk HB (2007) An outer membrane protein (ompA) homologue from the photosynthetic purple sulfur bacterium Allochromatium vinosum. Microbiol Res 162:341–346

    Article  CAS  PubMed  Google Scholar 

  • Baughn AD, Malamy MH (2004) The strict anaerobe Bacteroides fragilis grows in and benefits from nanomolar concentrations of oxygen. Nature 427:441–444

    Article  CAS  PubMed  Google Scholar 

  • Biebl H, Pfennig N (1979) Anaerobic CO2 uptake by phototrophic bacteria. Arch Hydrobiol Beih Ergeb Limnol 12:48–58

    Google Scholar 

  • Blankenship RE (2001) Molecular evidence for the evolution of photosynthesis. Trends Plant Sci 6:4–6

    Article  CAS  PubMed  Google Scholar 

  • Brochier-Armanet C, Talla E, Gribaldo S (2009) The multiple evolutionary histories of dioxygen reductases: implications for the origin and evolution of aerobic respiration. Mol Biol Evol 26:285–297

    Article  CAS  PubMed  Google Scholar 

  • Canfield DE (2005) The early history of atmospheric oxygen. Annu Rev Earth Planet Sci 33:1–36

    Article  CAS  Google Scholar 

  • Castresana J (2001) Comparative genomics and bioenergetics. Biochim Biophys Acta 1506:147–162

    Article  CAS  PubMed  Google Scholar 

  • Castresana J (2004) Evolution and phylogenetic analysis of respiration. In: Zannoni D (ed) Respiration in archaea and bacteria. Diversity of prokaryotic electron transport carriers. Kluwer Academic Publishers, Netherlands, pp 1–14

    Google Scholar 

  • Cole ST, Brosch R, Parkhill J, Garnier T, Churcher C, Harris D, Gordon SV, Eiglmeier K, Gas S, Barry CE III, Tekaia F, Badcock K, Basham D, Brown D, Chillingworth T, Connor R, Davies R, Devlin K, Feltwell T, Gentles S, Hamlin N, Holroyd S, Hornsby T, Jagels K, Krogh A, McLean J, Moule S, Murphy L, Oliver K, Osborne J, Quail MA, Rajandream MA, Rogers J, Rutter S, Seeger K, Skelton J, Squares R, Squares S, Sulston JE, Taylor K, Whitehead S, Barrell BG (1998) Deciphering the biology of Mycobacterium tuberculosis from the complete genome sequence. Nature 393:537–544

    Article  CAS  PubMed  Google Scholar 

  • Curatti L, Hernandez JA, Igarashi RY, Soboh B, Zhao D, Rubio LM (2007) In vitro synthesis of the iron molybdenum cofactor of nitrogenase from iron, sulfur, molybdenum, and homocitrate using purified proteins. Proc Natl Acad Sci USA 104:17626–17631

    Article  CAS  PubMed  Google Scholar 

  • Fang H, Lin RJ, Gennis RB (1989) Location of heme axial ligands in the cytochrome-d terminal oxidase complex of Escherichia coli determined by site-directed mutagenesis. J Biol Chem 264:8026–8032

    CAS  PubMed  Google Scholar 

  • Gallon JR (1992) Reconciling the incompatible N2 fixation and O2. New Phytol 122:571–609

    Article  CAS  Google Scholar 

  • Gosink MM, Franklin NM, Roberts GP (1990) The product of the Klebsiella pneumoniae nifX gene is a negative regulator of the nitrogen fixation (nif) regulon. J Bacteriol 172:1441–1447

    CAS  PubMed  Google Scholar 

  • Habte M, Alexander M (1980) Nitrogen fixation by photosynthetic bacteria in lowland rice culture. Appl Environ Microbiol 39:342–347

    CAS  PubMed  Google Scholar 

  • Hart SE, Schlarb-Ridley BG, Bendall DS, Howe CJ (2005) Terminal oxidases of cyanobacteria. Biochem Soc Trans 33:832–835

    Article  CAS  PubMed  Google Scholar 

  • Imhoff JF, Süling J, Petri R (1998) Phylogenetic relationships among the Chromatiaceae, their taxonomic reclassification and description of the new genera Allochromatium, Halochromatium, Isochromatium, Marichromatium, Thiococcus, Thiohalocapsa, and Thermochromatium. Int J Syst Bacteriol 48:1129–1143

    Article  PubMed  Google Scholar 

  • Junemann S (1997) Cytochrome bd terminal oxidase. Biochim Biophys Acta Bioenerg 1321:107–127

    Article  CAS  Google Scholar 

  • Kaminski PA, Kitts CL, Zimmerman Z, Ludwig RA (1996) Azorhizobium caulinodans uses both cytochrome bd (quinol) and cytochrome cbb3 (cytochrome c) terminal oxidases for symbiotic N2 fixation. J Bacteriol 178:5989–5994

    CAS  PubMed  Google Scholar 

  • Kampf C, Pfennig N (1980) Capacity of Chromatiaceae for chemotropic growth. Specific respiration rates of Thiocystis violacea and Chromatium vinosum. Arch Microbiol 127:125–135

    Article  Google Scholar 

  • Kampf C, Pfennig N (1986) Chemoautotrophic growth of Thiocystis violacea, Chromatium gracile and Chromatium vinosum in the dark at various O2 concentrations. J Basic Microbiol 26:517–531

    Article  Google Scholar 

  • Kaysser TM, Ghaim JB, Georgiou C, Gennis RB (1995) Methionine-393 is an axial ligand of the heme b(558) component of the cytochrome bd ubiquinol oxidase from Escherichia coli. Biochemistry 34:13491–13501

    Article  CAS  PubMed  Google Scholar 

  • Kondrat’eva EN, Zhukov VG, Ivanovsky RN, Petushkova P, Yu A, Monosov EZ (1976) The capacity of phototrophic sulfur bacterium Thiocapsa roseopersicina for chemosynthesis. Arch Microbiol 108:287–292

    Article  Google Scholar 

  • Lahiri S, Cole B, Pulakat L, Gavini N (2007) The NifX protein is involved in the final stages of FeMo-cofactor transport to the MoFe protein. Am J Biochem Biotechnol 3:92–102

    Article  CAS  Google Scholar 

  • Madigan M, Cox SS, Stegeman RA (1984) Nitrogen fixation and nitrogenase activities in members of the family Rhodospirillaceae. J Bacteriol 157:73–78

    CAS  PubMed  Google Scholar 

  • Oh J-I, Ko I-J, Kaplan S (2004) Reconstitution of the Rhodobacter sphaeroides cbb3-PrrBA signal transduction pathway in vitro. Biochemistry 43:7915–7923

    Article  CAS  PubMed  Google Scholar 

  • Osborne JP, Gennis RB (1999) Sequence analysis of cytochrome bd oxidase suggests a revised topology for subunit I. Biochim Biophys Acta Bioenerg 1410:32–50

    Article  CAS  Google Scholar 

  • Pfennig N, Truper H (1971) Type and neotype strains of the species of phototrophic bacteria maintained in pure culture. Int J Syst Bacteriol 21:19–24

    Article  Google Scholar 

  • Pfennig N, Truper H (1978) The family Chromatiaceae. In: Clayton RK, Systrom WR (eds) Prokaryotes, 6th edn. Plenum Publishing Company, New York

    Google Scholar 

  • Pittman MS, Corker H, Wu G, Binet MB, Moir AJG, Poole RK (2002) Cysteine is exported from Escherichia coli cytoplasm by CydDC, an ATP-binding casette-type transporter required for cytochrome assembly. J Biol Chem 277:49841–49849

    Article  CAS  PubMed  Google Scholar 

  • Pittman MS, Robinson HC, Poole RK (2005) A bacterial glutathione transporter (Escherichia coli CydDC) exports reductant to the periplasm. J Biol Chem 280:32254–32261

    Article  CAS  PubMed  Google Scholar 

  • Poole RK, Cook GM (2000) Redundancy of aerobic respiratory chains in bacteria? Routes, reasons and regulation. Adv Microb Physiol 43:165–204

    Article  CAS  PubMed  Google Scholar 

  • Poole RK, Hatch L, Cleeter MWJ, Gibson F, Cox GB, Guanghui W (1993) Cytochrome bd biosynthesis in Escherichia coli: the sequences of the cydC and cydD genes suggest that they encode the components of an ABC membrane transporter. Mol Microbiol 10:421–430

    Article  CAS  PubMed  Google Scholar 

  • Prange A, Engelhardt H, Truper HG, Dahl C (2004) The role of the sulfur globule proteins of Allochromatium vinosum: mutagenesis of the sulfur globule protein genes and expression studies by real-time RT-PCR. Arch Microbiol 182:165–174

    Article  CAS  PubMed  Google Scholar 

  • Preisig O, Anthamatten D, Hennecke H (1993) Genes for a microaerobically induced oxidase complex in Bradyrhizobium japonicum are essential for a nitrogen-fixing endosymbiosis. Proc Natl Acad Sci USA 90:3309–3313

    Article  CAS  PubMed  Google Scholar 

  • Rubio LM, Singer SW, Ludden PW (2004) Purification and characterization of NafY (apodinitrogenase γ subunit) from Azotobacter vinelandii. J Biol Chem 279:19739–19746

    Article  CAS  PubMed  Google Scholar 

  • Sambrook J, Maniatis T, Fritsch EF (1989) Molecular cloning. A laboratory manual. Cold Spring Harbor Laboratory Press, New York

    Google Scholar 

  • Shah VK, Rangaraj P, Chatterjee R, Allen RM, Roll JT, Roberts GP, Ludden PW (1999) Requirement of NifX and other nif proteins for in vitro biosynthesis of the iron–molybdenum cofactor of nitrogenase. J Bacteriol 181:2797–2801

    CAS  PubMed  Google Scholar 

  • Voggu L, Schlag S, Biswas R, Rosenstein R, Rausch C, Gotz F (2006) Microevolution of cytochrome bd oxidase in Staphylococci and its implication in resistance to respiratory toxins released by Pseudomonas. J Bacteriol 188:8079–8086

    Article  CAS  PubMed  Google Scholar 

  • Wahlund TM, Madigan MT (1993) Nitrogen fixation by the thermophilic green sulfur bacterium Chlorobium tepidum. J Bacteriol 175:474–478

    CAS  PubMed  Google Scholar 

  • Wu G, Hill S, Kelly MJS, Sawers G, Poole RK (1997) The cydR gene product, required for regulation of cytochrome bd expression in the obligate aerobe Azotobacter vinelandii, is an fnr-like protein. Microbiology 143:2197–2220

    Article  CAS  PubMed  Google Scholar 

  • Xiong J, Fischer WM, Inoue K, Nakahara M, Bauer CE (2000) Molecular evidence for the early evolution of photosynthesis. Science 289:1724–1730

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge the financial support from The Scientific and Technological Research Council of Turkey (TUBITAK) TBAG-105T080). We would like to thank Christiane Dahl of Rheinische Friedrich-Wilhelms-Universitat Bonn for providing the A. vinosum DSMZ180T culture and for valuable suggestions. We would also like to thank Charlotte Kampf for valuable discussions and suggestions. We would like to acknowledge technical assistance from Elif Aysimi Duman and Mustafa Kolukirik during different stages of this project. The first cydA construct was cloned by the first author in Dr. David Knaff’s laboratory at Texas Tech University from Strain D of A. vinosum.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Benan Dincturk.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dincturk, H.B., Demir, V. & Aykanat, T. Bd oxidase homologue of photosynthetic purple sulfur bacterium Allochromatium vinosum is co-transcribed with a nitrogen fixation related gene. Antonie van Leeuwenhoek 99, 211–220 (2011). https://doi.org/10.1007/s10482-010-9478-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10482-010-9478-5

Keywords

Navigation