Skip to main content
Log in

Distribution of anaerobic methane-oxidizing and sulfate-reducing communities in the G11 Nyegga pockmark, Norwegian Sea

  • Original Paper
  • Published:
Antonie van Leeuwenhoek Aims and scope Submit manuscript

Abstract

Pockmarks are seabed geological structures sustaining methane seepage in cold seeps. Based on RNA-derived sequences the active fraction of the archaeal community was analysed in sediments associated with the G11 pockmark, in the Nyegga region of the Norwegian Sea. The anaerobic methanotrophic Archaea (ANME) and sulfate-reducing bacteria (SRB) communities were studied as well. The vertical distribution of the archaeal community assessed by PCR-DGGE highlighted the presence of ANME-2 in surface sediments, and ANME-1 in deeper sediments. Enrichments of methanogens showed the presence of hydrogenotrophic methanogens of the Methanogenium genus in surface sediment layers as well. The active fraction of the archaeal community was uniquely composed of ANME-2 in the shallow sulfate-rich sediments. Functional methyl coenzyme M reductase gene libraries showed that sequences affiliated with the ANME-1 and ANME-3 groups appeared in the deeper sediments but ANME-2 dominated both surface and deeper layers. Finally, dissimilatory sulfite reductase gene libraries revealed a high SRB diversity (i.e. Desulfobacteraceae, Desulfobulbaceae, Syntrophobacteraceae and Firmicutes) in the shallow sulfate-rich sediments. The SRB diversity was much lower in the deeper section. Overall, these results show that the microbial community in sediments associated with a pockmark harbour classical cold seep ANME and SRB communities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410

    PubMed  CAS  Google Scholar 

  • Bahr M, Crump BC, Klepac-Ceraj V, Teske A, Sogin ML, Hobbie JE (2005) Molecular characterization of sulfate-reducing bacteria in a New England salt marsh. Environ Microbiol 7:1175–1185

    Article  PubMed  CAS  Google Scholar 

  • Balch WE, Wolfe RS (1976) New approach to the cultivation of methanogenic bacteria: 2-mercaptoethanesulfonic acid (HS-CoM)-dependent growth of Methanobacterium ruminatium in a pressurized atmosphere. Appl Environ Microbiol 32:781–791

    PubMed  CAS  Google Scholar 

  • Banning N, Brock F, Fry JC, Parkes RJ, Hornibrook ERC, Weightman JA (2005) Investigation of the methanogen population structure and activity in a brackish lake sediment. Environ Microbiol 7:947–960

    Article  PubMed  CAS  Google Scholar 

  • Beal EJ, House CH, Orphan VJ (2009) Manganese- and iron-dependent marine methane oxidation. Science 325:184–187

    Article  PubMed  CAS  Google Scholar 

  • Boetius A, Ravenschlag K, Schubert CJ, Rickert D, Widdel F, Gieske A (2000) A marine microbial consortium apparently mediating anaerobic oxidation of methane. Nature 407:623–626

    Article  PubMed  CAS  Google Scholar 

  • Bouloubassi I, Nabais E, Pancost Rd, Lorre A, Taphanel M-H (2009) First biomarker evidence for methane oxidation at cold seeps in the Southeast Atlantic (REGAB pockmark). Deep Sea Res Part 2 56:2239–2247

    Article  CAS  Google Scholar 

  • Cambon-Bonavita MA, Nadalig T, Roussel E, Delage E, Duperron S, Caprais JC, Boetius A, Sibuet M (2009) Diversity and distribution of methane-oxidizing microbial communities associated with different faunal assemblages in a giant pockmark of the Gabon continental margin. Deep Sea Res Part 2 56:2248–2258

    Article  CAS  Google Scholar 

  • Casamayor EO, Massana R, Benlloch S, Ovreas L, Diez B, Goddard VJ, Gasol JM, Joint I et al (2002) Changes in archaeal, bacterial and eukaryal assemblages along a salinity gradient by comparison of genetic fingerprinting methods in a multipond solar saltern. Environ Microbiol 4:338–348

    Article  PubMed  Google Scholar 

  • Chang Y-J, Peacock AD, Long PE, Stephen JR, McKinley JP, MacNaughton SJ, Anwar Hussain AKM, Saxton AM, White DC (2001) Diversity and characterization of sulfate-reducing bacteria in groundwater at a uranium mill tailings site. Appl Environ Microbiol 67:3149–3160

    Article  PubMed  CAS  Google Scholar 

  • Chong SC, Liu Y, Cummins M, Valentine DL, Boone RD (2002) Methanogenium marinum sp. nov., a H2-using methanigen from Skan Bay, Alaska, and kinetics of H2 utilization. Antonie Van Leeuwenhoek 81:263–270

    Article  PubMed  CAS  Google Scholar 

  • Cook KL, Whitehead TR, Spence C, Cotta MA (2008) Evaluation of the sulfate-reducing bacterial population associated with stored swine slurry. Anaerobe 14:172–180

    Article  PubMed  CAS  Google Scholar 

  • Dhillon A, Teske A, Dillon J, Stahl DA, Sogin ML (2003) Molecular characterization of sulfate-reducing bacteria in the Guaymas Basin. Appl Environ Microbiol 69:2765–2772

    Article  PubMed  CAS  Google Scholar 

  • Dimitrov L, Woodside J (2003) Deep sea pockmark environments in the eastern Mediterranean. Mar Geol 195:263–276

    Article  Google Scholar 

  • Ettwig KF, Butler MK, Le Paslier D, Pelletier E, Mangenot S, Kuypers MMM, Schreiber F, Dutilh BE, Zedelius J, de Beer D, Gloerich J, Wessels HJCT, van Alen T, Luesken F, Wu ML, van de Pas-Schoonen KT, Op den Camp HJM, Janssen-Megens EM, Francoijs K-J, Stunnenberg H, Weissenbach J, Jetten MSM, Strous M (2010) Nitrite-driven anaerobic methane oxidation by oxygenic bacteria. Nature 464:543–548

    Article  PubMed  CAS  Google Scholar 

  • Fang J, Shizuka A, Kato C, Schouten S (2006) Microbial diversity of cold-seep sediments in Sagami Bay, Japan, as determined by 16S rRNA gene and lipid analysis. FEMS Microbiol Ecol 57:429–441

    Article  PubMed  CAS  Google Scholar 

  • Foucher J-P, Westbrook GK, Boetius A, Ceramicola S, Dupré S, Mascle J, Mienert J, Pfannkuche O, Pierre C, Praeg D (2009) Structure and drivers of cold seep ecosystems. Oceanography 22:92–109

    Article  Google Scholar 

  • Girguis PR, CA E, DeLong EF (2005) Growth and population dynamics of anaerobic methane-oxidizing archaea and sulfate-reducing bacteria in a continuous-flow bioreactor. Appl Environ Microbiol 71:3725–3733

    Article  PubMed  CAS  Google Scholar 

  • Hales BA, Edwards C, Titchie DA, Hall G, Pickup RW, Saunders JR (1996) Isolation and identification of methanogen-specific DNA from blanket bog peat by PCR amplification and sequence analysis. Appl Environ Microbiol 62:668–675

    PubMed  CAS  Google Scholar 

  • Hall TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser 41:95–98

    CAS  Google Scholar 

  • Hallam SJ, Girguis PR, Preston CM, Richardson PM, DeLong EF (2003) Identification of methyl coenzyme M reductase A (mcrA) genes associated with methane-oxidizing Archaea. Appl Environ Microbiol 69:5483–5491

    Article  PubMed  CAS  Google Scholar 

  • Hallam SJ, Mincer TJ, Schleper C, Preston CM, Roberts K, Richardson PM, DeLong EF (2006) Pathways of carbon assimilation and ammonia oxidation suggested by environmental genomic analyses of marine Crenarchaeota. PLoS Biol 4:520–536

    Article  CAS  Google Scholar 

  • Hovland M, Svensen H (2006) Submarine pingoes: indicators of shallow gas hydrates in a pockmark at Nyegga, Norwegian sea. Mar Geol 228:15–23

    Article  Google Scholar 

  • Hovland M, Svensen H, Forsberg CF, Johansen H, Fichler C, Fossa JH, Jonsson R, Rueslatten H (2005) Complex pockmarks with carbonate-ridges off mid-Norway: products of sediment degassing. Mar Geol 218:191–206

    Article  Google Scholar 

  • Hustoft S, Bünz S, Mienert J, Chand S (2009) Gas hydrate reservoir and active methane-venting province in sediments on <20 Ma young oceanic crust in the Fram Strait, offshore NW-Svalbard. Earth Planet Sci Lett 284:12–24

    Article  CAS  Google Scholar 

  • Inagaki F, Tsunogai U, Suzuki M, Kosaka A, Machiyama H, Takai K, Nunoura T et al (2004) Characterization of C1-metabolizing prokaryotic communities in methane seep habitats at the Kuroshima Knoll, southern Ryukyu Arc, by analyzing pmoA, mmoX, mxaF, mcrA, and 16S rRNA genes. Appl Environ Microbiol 70:7445–7455

    Article  PubMed  CAS  Google Scholar 

  • Janse I, Bok J, Zwart G (2004) A simple remedy against artifactual double bands in denaturing gradient gel electrophoresis. J Microbiol Methods 57:279–281

    Article  PubMed  CAS  Google Scholar 

  • Joulian C, Ramsing NB, Ingvorsen K (2001) Congruent phylogenies of most common small-subunit rRNA and dissimilatory sulfite reductase gene sequences retrieved from estuarine sediments. Appl Environ Microbiol 37:3314–3318

    Article  Google Scholar 

  • Kaneko R, Hayashi T, Tanahashi M, Naganuma T (2007) Phylogenetic diversity and distribution of dissimilatory sulfite reductase genes from deep-sea sediment cores. Mar Biotechnol 9:429–436

    Article  PubMed  CAS  Google Scholar 

  • Kendall MM, Wardlaw GD, Tang CF, Bonin AS, Liu Y, Valentine DL (2007) Diversity of archaea in marine sediments from Skan Bay, Alaska, including cultivated methanogens, and description of Methanogenium boonei sp. nov. Appl Environ Microbiol 73:407–414

    Article  PubMed  CAS  Google Scholar 

  • Knittel K, Lösekann T, Boetius A, Kort R, Amann R (2005) Diversity and distribution of methanotrophic Archaea at cold seeps. Appl Environ Microbiol 71:467–479

    Article  PubMed  CAS  Google Scholar 

  • Krüger M, Meyerdierks A, Glöckner FO, Amann R, Widdel F, Kube M, Reinhardt R, Kanht J, Böcher R, Thauer RK, Shima S (2003) A conspicuous nickel protein in microbial mats that oxidize methane anaerobically. Nature 426:878–881

    Article  PubMed  Google Scholar 

  • Krüger M, Blumenberg M, Kasten S, Wieland A, Känel L, Klock J-H, Michaelis W, Seifert R (2008) A novel, multi-layered methanotrophic microbial mat system growing on the sediment of the Black Sea. Environ Microbiol 10:1934–1947

    Article  PubMed  Google Scholar 

  • Lane DJ (1991) 16S/23S rRNA sequencing: nucleic acid techniques in bacterial systematics. Wiley, New York

    Google Scholar 

  • Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, McWilliam H, Valentin F, Wallace IM, Wilm A, Lopez R, Thompson JD, Gibson TJ, Higgins DG (2007) Clustal W and Clustal X version 2.0. Bioinformatics 23:2947–2948

    Article  PubMed  CAS  Google Scholar 

  • Lein A, Vogt P, Crane K, Egorov A, Ivanov M (1999) Chemical and isotopic evidence for the nature of the fluid in CH4-containing sediments of the Haskon Mosby Mud Volcano. Geo-Mar Lett 19:76–83

    Article  CAS  Google Scholar 

  • Leloup J, Loy A, Knab NJ, Borowski C, Wagner M, Jorgensen BB (2007) Diversity and abundance of sulfate-reducing microorganisms in the sulfate and methane zones of a marine sediment, Black Sea. Environ Microbiol 9:131–142

    Article  PubMed  CAS  Google Scholar 

  • Liu X, Bagwell CE, Wu L, Devol AH, Zhou J (2003) Molecular diversity of sulfate-reducing bacteria from two different continental margin habitats. Appl Environ Microbiol 69:6073–6081

    Article  PubMed  CAS  Google Scholar 

  • Lloyd KG, Lapham L, Teske A (2006) An anaerobic methane-oxidizing community of ANME-1b Archaea in hypersaline Gulf of Mexico sediments. Appl Environ Microbiol 72:7218–7230

    Article  PubMed  CAS  Google Scholar 

  • Lösekann T, Knittel K, Nadalig T, Fuchs B, Niemann H, Boetius A, Amann R (2007) Diversity and abundance of aerobic and anaerobic methane oxidizers at the Haakon Mosby Mud Volcano, Barents Sea. Appl Environ Microbiol 73:3348–3362

    Article  PubMed  Google Scholar 

  • Mazzini A, Svensen H, Hovland M, Planke S (2006) Comparison and implications from strikingly different authigenic carbonates in a Nyegga complex pockmark, G11, Norwegian Sea. Mar Geol 231:89–102

    Article  CAS  Google Scholar 

  • Mills HJ, Hodges C, Wilson K, MacDonald IR, Sobecky PA (2003) Microbial diversity in sediments associated with surface-breaching gas hydrate mounds in the Gulf of Mexico. FEMS Microbiol Ecol 46:39–52

    Article  PubMed  CAS  Google Scholar 

  • Mills HJ, Martinez RJ, Story S, Sobecky PA (2004) Identification of members of the metabolically active microbial populations associated with Beggiatoa species mat communities form Gulf of Mexico cold-seep sediments. Appl Environ Microbiol 70:5447–5458

    Article  PubMed  CAS  Google Scholar 

  • Nauhaus K, Treude T, Boetius A, Krüger M (2005) Environmental regulation of the anaerobic oxidation of methane: a comparison of ANME-I and ANME-II communities. Environ Microbiol 7:98–106

    Article  PubMed  CAS  Google Scholar 

  • Nauhaus K, Albrecht M, Elvert M, Boetius A, Widdel F (2007) In vitro cell growth of marine archaeal-bacterial consortia during anaerobic oxidation of methane with sulfate. Environ Microbiol 9:187–196

    Article  PubMed  CAS  Google Scholar 

  • Niemann H, Lösekann T, de Beer D, Elvert M, Nadalig T, Knittel K, Amann R, Sauter EJ, Schlüter M, Klages M, Foucher J-P, Boetius A (2006) Novel microbial communities of the Haakon Mosby mud volcano and their role as a methane sink. Nature 443:854–858

    Article  PubMed  CAS  Google Scholar 

  • Omoregie EO, Niemann H, Mastalerz V, de Lange GJ, Stadnitskaia A, Mascle J, Foucher J-P, Boetius A (2009) Microbial methane oxidation and sulfate reduction at cold seeps of the deep Eastern Mediterranean Sea. Mar Geol 261:114–127

    Article  CAS  Google Scholar 

  • Orcutt B, Boetius A, Elvert M, Samarkin V, Joye SB (2005) Molecular biogeochemistry of sulfate reduction, methanogenesis and the anaerobic oxidation of methane at Gulf of Mexico cold seeps. Geochim Cosmochim Acta 69:4267–4281

    Article  CAS  Google Scholar 

  • Ovreas L, Forney L, Daae FL, Torsvik V (1997) Distribution of bacterioplankton in meromictic Lake Saelenvannet, as determined by denaturing gradient gel electrophoresis of PCR-amplified gene fragmetns coding for 16S rRNA. Appl Environ Microbiol 63:3367–3373

    PubMed  CAS  Google Scholar 

  • Parkes RJ, Cragg BA, Banning N, Brock F, Webster G, Fry JC, Hornibrook E et al (2007) Biogeochemistry and biodiversity of methane cycling in subsurface marine sediments (Skagerrak, Denmark). Environ Microbiol 9:1146–1161

    Article  PubMed  CAS  Google Scholar 

  • Pruesse E, Quast C, Knittel K, Fuchs BM, Ludwig W, Peplies J, Glöckner FO (2007) SILVA: a comprehensive online resource for quality checked and aligned ribosomal RNA sequence data compatible with ARB. Nucleic Acids Res 35:7188–7196

    Article  PubMed  CAS  Google Scholar 

  • Raghoebarsing AA, Pol A, van de Pas-Schoonen KT, Smolders AJP, Ettwig KFW, Rijpstra IC, Schouten S, Sinninghe Damsté JS, Op den Camp HJM, Jetten MSM, Strous M (2006) A microbial consortium couples anaerobic methane oxidation to denitrification. Nature 440:918–921

    Article  PubMed  CAS  Google Scholar 

  • Rooney-Varga J, Devereux R, Evans RS, Hines ME (1997) Seasonal changes in the relative abundance of uncultivated sulfate-reducing bacteria in a salt marsh sediment and in the rhizosphere of Spartina alterniflora. Appl Environ Microbiol 63:3895–3901

    PubMed  CAS  Google Scholar 

  • Schreiber L, Holler T, Knittel K, Meyerdierks A, Amann R (2010) Identification of the dominant sulfate-reducing bacterial partner of anaerobic methanotrophs of the ANME-2 clade. Environ Microbiol 12:2327–2340

    PubMed  CAS  Google Scholar 

  • Seifert R, Nauhaus K, Blumenberg M, Krüger M, Michaelis W (2006) Methane dynamics in a microbial community of the Black Sea traced by stable carbon isotopes in vitro. Org Geochem 37:1411–1419

    Article  CAS  Google Scholar 

  • Singleton DR, Furlong MA, Rathbun SL, Whitman WB (2001) Quantitative comparisons of 16S rRNA gene sequence libraries from environmental samples. Appl Environ Microbiol 67:4374–4376

    Article  PubMed  CAS  Google Scholar 

  • Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol Biol Evol 24:1596–1599

    Article  PubMed  CAS  Google Scholar 

  • Teske A, Sorensen KB (2008) Uncultured Archaea in deep marine subsurface sediments: have we caught them all ? ISME J 2:3–18

    Article  PubMed  CAS  Google Scholar 

  • Thauer RK (1998) Biochemistry of methanogenesis: a tribute to Marjory Stephenson. Microbiology 144:2377–2406

    Article  PubMed  CAS  Google Scholar 

  • Toffin L, Webster G, Weightman AJ, Fry JC, Prieur D (2004) Molecular monitoring of culturable bacteria from deep-sea sediment of the Nankai Trough, Leg 190 ocean drilling program. FEMS Microbiol Ecol 48:357–367

    Article  PubMed  CAS  Google Scholar 

  • Vetriani C, MB J, Jannasch HW, Stahl DA, Reysenbach A-L (1999) Population structure and phylogenetic characterization of marine bentic Archaea in deep-sea sediments. Appl Environ Microbiol 65:4375–4384

    PubMed  CAS  Google Scholar 

  • Wagner M, Roger AJ, Flax JL, Brusseau GA, Stahl DA (1998) Phylogeny of dissimilatory sulfite reductases supports an early origin of sulfate respiration. J Bacteriol 180:2975–2982

    PubMed  CAS  Google Scholar 

  • Zhou J, Bruns MA, Tiedje JM (1996) DNA recovery from soils of diverse composition. Appl Environ Microbiol 62:316–322

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We would like to thank Hervé Nouzé the chief scientist of the VICKING cruise, the ROV team, the officers and crew of the RV Pourquoi Pas? as well as the shipboard scientific community for their help at sea. We would also like to thank Andreas Teske (University of North Carolina), and Christian Jeanthon (Station Biologique of Roscoff) for their helpful scientific comments. This work was funded by the HERMES project Contract No. GOCE-CT-2005-511234-1, and the ANR Deep Oases.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cassandre Sara Lazar.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 207 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lazar, C.S., Dinasquet, J., L’Haridon, S. et al. Distribution of anaerobic methane-oxidizing and sulfate-reducing communities in the G11 Nyegga pockmark, Norwegian Sea. Antonie van Leeuwenhoek 100, 639–653 (2011). https://doi.org/10.1007/s10482-011-9620-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10482-011-9620-z

Keywords

Navigation