Skip to main content

Advertisement

Log in

Apoptosis effector mechanisms: A requiem performed in different keys

  • Reviews
  • Published:
Apoptosis Aims and scope Submit manuscript

Abstract

Apoptosis is the regulated form of cell death utilized by metazoans to remove unneeded, damaged, or potentially deleterious cells. Certain manifestations of apoptosis may be associated with the proteolytic activity of caspases. These changes are often held as hallmarks of apoptosis in dying cells. Consequently, many regard caspases as the central effectors or executioners of apoptosis. However, this “caspase-centric” paradigm of apoptotic cell death does not appear to be as universal as once believed. In fact, during apoptosis the efficacy of caspases may be highly dependent on the cytotoxic stimulus as well as genetic and epigenetic factors. An ever-increasing number of studies strongly suggest that there are effectors in addition to caspases, which are important in generating apoptotic signatures in dying cells. These seemingly caspase-independent effectors may represent evolutionarily redundant or failsafe mechanisms for apoptotic cell elimination. In this review, we will discuss the molecular regulation of caspases and various caspase-independent effectors of apoptosis, describe the potential context and/or limitations of these mechanisms, and explore why the understanding of these processes may have relevance in cancer where treatment is believed to engage apoptosis to destroy tumor cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kerr JF. History of the events leading to the formulation of the apoptosis concept. Toxicology 2002; 181–182: 471–474.

    PubMed  Google Scholar 

  2. Majno G, Joris I. Apoptosis, oncosis, and necrosis. An overview of cell death. Am J Pathol 1995; 146: 3–16.

    PubMed  CAS  Google Scholar 

  3. Leist M, Jaattela M. Four deaths and a funeral: From caspases to alternative mechanisms. Nat Rev Mol Cell Biol 2001; 2: 589–598.

    PubMed  CAS  Google Scholar 

  4. Plomp PJ, Gordon PB, Meijer AJ, Hoyvik H, Seglen PO. Energy dependence of different steps in the autophagic-lysosomal pathway. J Biol Chem 1989; 264: 6699–6704.

    PubMed  CAS  Google Scholar 

  5. Droge W. Autophagy and aging—Importance of amino acid levels. Mech Ageing Dev 2004; 125: 161–168.

    PubMed  CAS  Google Scholar 

  6. Rodriguez-Enriquez S, He L, Lemasters J. Role of mitochondrial permeability transition pores in mitochondrial autophagy. Int J Biochem Cell Biol 2004; 36: 2463–2472.

    PubMed  CAS  Google Scholar 

  7. Pattingre S, Tassa A, Qu X, et al. Bcl-2 antiapoptotic proteins inhibit Beclin 1-dependent autophagy. Cell; 2005; 122: 927–939.

    PubMed  CAS  Google Scholar 

  8. Levine B, Yuan J. Autophagy in cell death: An innocent convict? J Clin Invest 2005; 115: 2679–2688.

    PubMed  CAS  Google Scholar 

  9. Gonzalez-Polo RA, Boya P, Pauleau AL, et al. The apoptosis/autophagy paradox: Autophagic vacuolization before apoptotic death. J Cell Sci 2005; 118: 3091–3102.

    PubMed  CAS  Google Scholar 

  10. Fadeel B, Orrenius S, Zhivotovsky B. Apoptosis in human disease: A new skin for the old ceremony? Biochem Biophys Res Commun 1999; 266: 699–717.

    PubMed  CAS  Google Scholar 

  11. Kerr JFR, Wyllie AH, Curie AR. Apoptosis: A basic biological phenomenon with wide-ranging implications in tissue kinetics. Br J Cancer 1972; 26: 239–257.

    PubMed  CAS  Google Scholar 

  12. Yasuhara S, Zhu Y, Matsui T, et al. Comparison of comet assay, electron microscopy, and flow cytometry for detection of apoptosis. J Histochem Cytochem 2003; 51: 873–885.

    PubMed  CAS  Google Scholar 

  13. Wyllie AH, Kerr JF, Currie AR. Cell death: The significance of apoptosis. Int Rev Cytol 1980; 68: 251–306.

    Article  PubMed  CAS  Google Scholar 

  14. Hail N Jr., Lotan R. Apoptosis induction by the natural product cancer chemopreventive agent deguelin is mediated through the inhibition of mitochondrial respiration. Apoptosis 2004; 9: 437–447.

    PubMed  CAS  Google Scholar 

  15. Kerr JFR, Gobe GC, Winterford CM, Harmon BV. Anatomical methods in cell death. Methods Cell Biol 1995; 46: 1–27.

    PubMed  CAS  Google Scholar 

  16. Green D, Kroemer G. The central executioners of apoptosis: caspases or mitochondria. Trends Cell Biol 1998; 8: 267–271.

    PubMed  CAS  Google Scholar 

  17. Thornberry NA, Lazebnik Y. Caspases: Enemies within. Science 1998; 281: 1312–1316.

    PubMed  CAS  Google Scholar 

  18. Ferri KF, Kroemer G. Control of apoptotic DNA degradation. Nat Cell Biol 2000; 2: E63–E64.

    PubMed  CAS  Google Scholar 

  19. Ferri KF, Kroemer G. Organelle-specific initiation of cell death pathways. Nat Cell Biol 2001; 3: E255–E263.

    PubMed  CAS  Google Scholar 

  20. Hengartner MO. The biochemistry of apoptosis. Nature 2000; 407: 770–776.

    PubMed  CAS  Google Scholar 

  21. Kroemer G, Martin SJ. Caspase-independent cell death. Nat Med 2005; 11: 725–730.

    PubMed  Google Scholar 

  22. Lockshin RA, Zakeri Z. Caspase-independent cell death? Oncogene 2004; 23: 2766–2773.

    PubMed  CAS  Google Scholar 

  23. Garrido C, Kroemer G. Life’s smile, death’s grin: Vital functions of apoptosis-executing proteins. Curr Opin Cell Biol 2004; 16: 639–646.

    PubMed  CAS  Google Scholar 

  24. Launay S, Hermine O, Fontenay M, Kroemer G, Solary E, Garrido C. Vital functions for lethal caspases. Oncogene 2005; 24: 5137–5148.

    PubMed  CAS  Google Scholar 

  25. Cristea IM, Degli Esposti M. Menrane lipids and cell death: An overview. Chem Phys Lipids 2004; 129: 133–160.

    PubMed  CAS  Google Scholar 

  26. Danial NN, Korsmeyer SJ. Cell death: Critical control points. Cell 2004; 116: 205–219.

    PubMed  CAS  Google Scholar 

  27. Kroemer G, Reed JC. Mitochondrial control of cell death. Nat Med 2000; 6: 513–519.

    PubMed  CAS  Google Scholar 

  28. Reed JC, Jurgensmeier JM, Matsuyama S. Bcl-2 family proteins and mitochondria. Biochim Biophys Acta 1998; 1366: 127–137.

    PubMed  CAS  Google Scholar 

  29. Guicciardi ME, Deussing J, Miyoshi H, et al. Cathepsin B contributes to TNF-α-mediated hepatocyte apoptosis by promoting mitochondrial release of cytochrome c. J Clin Invest 2000; 106: 1127–1137.

    PubMed  CAS  Google Scholar 

  30. Johnson DE. Noncaspase proteases in apoptosis. Leukemia 2000; 14: 1695–1703.

    PubMed  CAS  Google Scholar 

  31. Suzuki Y, Takahashi-Niki K, Akagi T, Hashikawa T, Takahashi R. Mitochondrial protease Omi/HtrA2 enhances caspase activation through multiple pathways. Cell Death Differ 2004; 11: 208–216.

    PubMed  CAS  Google Scholar 

  32. Hail N Jr., Mitochondria: A novel target for the chemoprevention of cancer. Apoptosis 2005; 10: 687–705.

    PubMed  CAS  Google Scholar 

  33. Halestrap AP, McStay GP, Clarke SJ. The permeability transition pore complex: Another view. Biochimie 2002; 84: 153–166.

    PubMed  CAS  Google Scholar 

  34. Costantini P, Jocotot E, Decaudin D, Kroemer G. Mitochondrion as a novel target of anticancer chemotherapy. J Natl Cancer Inst 2000; 92: 1042–1053.

    PubMed  CAS  Google Scholar 

  35. Zoratti M, Szabò I. The mitochondrial permeability transition. Biochim Biophys Acta 1995; 1241: 139–176.

    PubMed  Google Scholar 

  36. Tsujimoto Y. Cell death regulation by the Bcl-2 protein family in the mitochondria. J Cell Physiol 2003; 195: 158–167.

    PubMed  CAS  Google Scholar 

  37. Cohen GM. Caspases: The executioners of apoptosis. Biochem J 1997; 326: 1–16.

    PubMed  CAS  Google Scholar 

  38. Ashkenazi A, Dixit VM. Death receptors: Signaling and modulation. Science 1998; 281: 1305–1308.

    PubMed  CAS  Google Scholar 

  39. Yin X-M, Wang K, Gross A, et al. Bid-deficient mice are resistant to Fas-induced hepatocellular apoptosis. Nature 1999; 400: 886–891.

    PubMed  CAS  Google Scholar 

  40. Lou X, Kim CN, Yang J, Jemmerson R, Wang X. Bid, a Bcl-2 interacting protein, mediates cytochrome c release from the mitochondria in response to activation of cell surface death receptors. Cell 1998; 94: 481–490.

    Google Scholar 

  41. Shimizu S, Narita M, Tsujimoto Y. Bcl-2 family proteins regulate the release of apoptogenic cytochrome c by the mitochondrial channel VDAC. Nature 1999; 399: 483–487.

    PubMed  CAS  Google Scholar 

  42. Sakahira H, Enari M, Nagata S. Cleavage of CAD inhibitor in CAD activation and DNA degradation during apoptosis. Nature 1998; 391: 96–99.

    PubMed  CAS  Google Scholar 

  43. Fischer U, Janicke RU, Schulze-Osthoff K. Many cuts to ruin: a comprehensive update of caspase substrates. Cell Death Differ 2003; 10: 76–100.

    PubMed  CAS  Google Scholar 

  44. Nagata S. DNA degradation in development and programmed cell death. Annu Rev Immunol 2005; 23: 853–875.

    PubMed  CAS  Google Scholar 

  45. Nagase H, Fukuyama H, Tanaka M, Kawane K, Nagata S. Mutually regulated expression of caspase-activated DNase and its inhibitors for apoptotic DNA fragmentation. Cell Death Differ 2003; 10: 142–143.

    PubMed  CAS  Google Scholar 

  46. Tsukada T, Watanabe M, Yamashima T. Implications of CAD and DNase II in ischemic neuronal necrosis specific for the primate hippocampus. J Neurochem 2001; 79: 1196–1206.

    PubMed  CAS  Google Scholar 

  47. McIlroy D, Tanaka M, Sakahira H, et al. An auxiliary mode of apoptotic DNA fragmentation provided by phagocytes. Genes Dev 2000; 14: 549–558.

    PubMed  CAS  Google Scholar 

  48. Thomas DA, Du C, Xu M, Wang X, Ley TJ. DFF45/ICAD can be directly processed by granzyme B during the induction of apoptosis. Immunity 2000; 12: 621–632.

    PubMed  CAS  Google Scholar 

  49. Sharif-Askari E, Alam A, Rheaume E, et al. Direct cleavage of the human DNA fragmentation factor-45 by granzyme B induces caspase-activated DNase release and DNA fragmentation. EMBO J 2001; 20: 3101–3113.

    PubMed  CAS  Google Scholar 

  50. Xu RH, Pelicano H, Zhou Y, et al. Inhibition of glycolysis in cancer cells: A novel strategy to overcome drug resistance associated with mitochondrial respiratory defect and hypoxia. Cancer Res 2005; 65: 613–621.

    PubMed  CAS  Google Scholar 

  51. Slater AF, Nobel CS, Orrenius S. The role of intracellular oxidants in apoptosis. Biochim Biophys Acta 1995; 1271: 59–62.

    PubMed  Google Scholar 

  52. Hampton MB, Fadeel B, Orrenius S. Redox regulation of the caspases during apoptosis. Ann NY Acad Sci 1998; 854: 328–335.

    PubMed  CAS  Google Scholar 

  53. Chandra J, Samali A, Orrenius S. Triggering and modulation of apoptosis by oxidative stress. Free Radic Biol Med 2000; 29: 323–333.

    PubMed  CAS  Google Scholar 

  54. Stennicke HR, Salvesen GS. Catalytic properties of the caspases. Cell Death Differ 1999; 6: 1054–1059.

    PubMed  CAS  Google Scholar 

  55. Ogura T, Tatemichi M, Esumi H. Nitric oxide inhibits CPP32-like activity under redox regulation. Biochem Biophys Res Commun 1997; 236: 365–369.

    PubMed  CAS  Google Scholar 

  56. Melino G, Bernassola F, Knight RA, Corasaniti MT, Nistico G, Finazzi-Agro A. S-nitrosylation regulates apoptosis. Nature 1997; 388: 432–433.

    PubMed  CAS  Google Scholar 

  57. Dimmeler S, Haendeler J, Nehls M, Zeiher AM. Suppression of apoptosis by nitric oxide via inhibition of interleukin-1β-converting enzyme (ICE)-like and cysteine protease protein (CPP)-32-like proteases. J Exp Med 1997; 185: 601–607.

    PubMed  CAS  Google Scholar 

  58. Goldstein JC, Waterhouse NJ, Juin P, Evan GI, R GD. The coordinate release of cytochrome c during apoptosis is rapid, complete and kinetically invariant. Nat Cell Biol 2000; 2: 156–162.

    PubMed  CAS  Google Scholar 

  59. Khodjakov A, Rieder C, Mannella CA, Kinnally KW. Laser micro-irradiation of mitochondria: is there an amplified mitochondrial death signal in neural cells? Mitochondrion 2004; 3: 217–227.

    PubMed  CAS  Google Scholar 

  60. Martinou JC, Desagher S, Antonsson B. Cytochrome c release from mitochondria: all or nothing. Nat Cell Biol 2000; 2: 41–43.

    Google Scholar 

  61. Zhou LL, Zhou LY, Luo KQ, Chang DC. Smac/DIABLO and cytochrome c are released from mitochondria through a similar mechanism during UV-induced apoptosis. Apoptosis 2005; 10: 289–299.

    PubMed  CAS  Google Scholar 

  62. Ott M, Robertson JD, Gogvadze V, Zhivotovsky B, Orrenius S. Cytochrome c release from the mitochondria proceeds in by a two-step process. Proc Natl Acad Sci USA 2002; 99: 1259–1263.

    PubMed  CAS  Google Scholar 

  63. Schagger H, Pfeiffer K. The ratio of oxidative phosphorylation complexes I-V in bovine heart mitochondria and the composition of respiratory chain supercomplexes. J Biol Chem 2001; 276: 37861–37867.

    PubMed  CAS  Google Scholar 

  64. Gupte S, Wu ES, Hoechli L, et al. Relationship between lateral diffusion, collision frequency, and electron transfer of mitochondrial inner membrane oxidation-reduction components. Proc Natl Acad Sci USA 1984; 81: 2606–2610.

    PubMed  CAS  Google Scholar 

  65. Schwerzmann K, Cruz-Orive LM, Eggman R, Sanger A, Weibel ER. Molecular architecture of the inner membrane of mitochondria from rat liver: A combined biochemical and stereological study. J Cell Biol 1986; 102: 97–103.

    PubMed  CAS  Google Scholar 

  66. Cai J, Jones DP. Superoxide in apoptosis. J Biol Chem 1998; 273: 11401–11404.

    PubMed  CAS  Google Scholar 

  67. Klaunig JE, Kamendulis LM. The role of oxidative stress in carcinogenesis. Annu Rev Pharmacol Toxicol 2004; 44: 239–267.

    PubMed  CAS  Google Scholar 

  68. Kinnula VL, Crapo JD. Superoxide dismutases in malignant cells and human tumors. Free Radic Biol Med 2002; 36: 718–744.

    Google Scholar 

  69. Spitz DR, Sim JE, Ridnour LA, Galoforo SS, Lee YJ. Glucose deprivation-induced oxidative stress in human tumor cells. A fundamental defect in metabolism? Ann NY Acad Sci 2000; 899: 349–362.

    Article  PubMed  CAS  Google Scholar 

  70. Pelicano H, Carney D, Huang P. ROS stress in cancer cells and therapeutic implications. Drug Resist Updat 2004; 7: 97–110.

    PubMed  CAS  Google Scholar 

  71. Renschler MF. The emerging role of reactive oxygen species in cancer therapy. Eur J Cancer 2004; 40: 1934–1940.

    PubMed  CAS  Google Scholar 

  72. Fisher DE. Apoptosis in cancer therapy: crossing the threshold. Cell 1994; 78: 539–542.

    PubMed  CAS  Google Scholar 

  73. Martin SJ, Green DR. Apoptosis as a goal of cancer therapy. Curr Opin Oncol 1994; 6: 616–621.

    PubMed  CAS  Google Scholar 

  74. Reed JC. Apoptosis-targeted therapies for cancer. Cancer Cell 2002; 3: 17–22.

    Google Scholar 

  75. Strand S, Hofmann WJ, Hug H, et al. Lymphocyte apoptosis induced by CD95 (APO-1/Fas) ligand-expressing tumor cells. A mechanism of immune evasion? Nat Med 1996; 2: 1361–1366.

    PubMed  CAS  Google Scholar 

  76. Hill LL, Ouhtit A, Loughlin SM, Kripke ML, Ananthaswamy HN, Owen-Schaub LB. Fas ligand: A sensor for DNA damage critical in skin cancer etiology. Science 1999; 285: 898–900.

    PubMed  CAS  Google Scholar 

  77. Philchenkov A, Zavelevich M, Kroczak TJ, Los M. Caspases and cancer: Mechanisms of inactivation and new treatment modalities. Exp Oncol 2004; 26: 82–97.

    PubMed  CAS  Google Scholar 

  78. Teitz T, Wei T, Valentine MB, et al. Caspase 8 is deleted or silenced preferentially in childhood neuroblastomas with amplification of MYCN. Nat Med 2000; 6: 529–535.

    PubMed  CAS  Google Scholar 

  79. Palmerini F, Devilard E, Jarry A, Birg F, Xerri L. Caspase 7 downregulation as an immunohistochemical marker of colonic carcinoma. Hum Pathol 2001; 32: 461–467.

    PubMed  CAS  Google Scholar 

  80. Janicke RU, Sprengart ML, Wati MR, Porter AG. Caspase-3 is required for DNA fragmentation and morphological changes associated with apoptosis. J Biol Chem 1998; 272: 9357–9360.

    Google Scholar 

  81. Hajra KM, Liu JR. Apoptosome dysfunction in human cancer. Apoptosis 2004; 9: 691–704.

    PubMed  CAS  Google Scholar 

  82. Soengas MS, Capodieci P, Polsky D, et al. Inactivation of the apoptosis effector Apaf-1 in malignant melanoma. Nature 2001; 409: 207–211.

    PubMed  CAS  Google Scholar 

  83. Fu WN, Bertoni F, Kelsey SM, et al. Role of DNA methylation in the suppression of Apaf-1 protein in human leukemia. Oncogene 2003; 22: 451–455.

    PubMed  CAS  Google Scholar 

  84. Deveraux QL, Roy N, Stennicke HR, et al. IAPs block apoptotic events induced by caspase-8 and cytochrome c by direct inhibition of distinct caspases. EMBO J 1998; 17: 2215–2223.

    PubMed  CAS  Google Scholar 

  85. Holcik M, Gibson H, Korneluk RG. XIAP: Apoptotic brake and promising therapeutic target. Apoptosis 2001; 6: 253–261.

    PubMed  CAS  Google Scholar 

  86. Salvesen GS, Duckett CS. IAP proteins: Blocking the road to death’s door. Nat Rev Mol Cell Biol 2002; 3: 401–410.

    PubMed  CAS  Google Scholar 

  87. Ricci JE, Munoz-Pinedo C, Fitzgerald P, et al. Disruption of mitochondrial function during apoptosis is mediated by caspase cleavage of the p75 subunit of complex I of the electron transport chain. Cell 2004; 117: 773–786.

    PubMed  CAS  Google Scholar 

  88. Schlegel RA, Williamson P. Phosphatidylserine, a death knell. Cell Death Differ 2001; 8: 551–563.

    PubMed  CAS  Google Scholar 

  89. Wolf CM, Reynolds JE, Morana SJ, Eastman A. The temporal relationship between protein phosphatase, ICE/CED-3 proteases, intracellular acidification, and DNA fragmentation in apoptosis. Exp Cell Res 1997; 230: 22–27.

    PubMed  CAS  Google Scholar 

  90. Mignotte B, Vayssière J-L. Mitochondria and apoptosis. Eur J Biochem 1998; 252: 1–15.

    PubMed  CAS  Google Scholar 

  91. Kroemer G. Mitochondrial implication in apoptosis. Towards an endosymbiont hypothesis of apoptosis evolution. Cell Death Differ 1997; 4: 443–456.

    PubMed  CAS  Google Scholar 

  92. Golstein P, Kroemer G. Redundant cell death mechanisms as relics and backups. Cell Death Differ 2005; 12: 1490–1496.

    PubMed  CAS  Google Scholar 

  93. Jaattela M, Tschopp J. Caspase-independent cell death in T lymphocytes. Nat Immunol 2003; 4: 416–423.

    PubMed  Google Scholar 

  94. Xiang J, Chao DT, Korsmeyer SJ. BAX-induced cell death may not require interleukin 1 β-converting enzyme-like proteases. Proc Natl Acad Sci USA 1996; 93: 14559–14563.

    PubMed  CAS  Google Scholar 

  95. Mathiasen IS, Lademann U, Jaattela M. Apoptosis induced by vitamin D compounds in breast cancer cells is inhibited by Bcl-2 but does not involve known caspases or p53. Cancer Res 1999; 59: 4848–4856.

    PubMed  CAS  Google Scholar 

  96. Assefa Z, Vantieghem A, Garmyn M, et al. p38 mitogen-activated protein kinase regulates a novel, caspase-independent pathway for the mitochondrial cytochrome c release in ultraviolet B radiation-induced apoptosis. J Biol Chem 2000; 275: 21416–21421.

    PubMed  CAS  Google Scholar 

  97. Lorenzo HK, Susin SA, Penninger J, Kroemer G. Apoptosis inducing factor (AIF): A phylogenetically old, caspase-independent effector of cell death. Cell Death Differ 1999; 6: 516–524.

    PubMed  CAS  Google Scholar 

  98. Okuno S, Shimizu S, Ito T, et al. Bcl-2 prevents caspase-independent cell death. J Biol Chem 1998; 273: 34272–34277.

    PubMed  CAS  Google Scholar 

  99. Maianski NA, Roos D, Kuijpers TW. Tumor necrosis factor α induces a caspase-independent death pathway in human neutrophils. Blood 2003; 101: 1987–1995.

    PubMed  CAS  Google Scholar 

  100. Marzo I, Perez-Galan P, Giraldo P, Rubio-Felix D, Anel A, Naval J. Cladribine induces apoptosis in human leukaemia cells by caspase-dependent and -independent pathways acting on mitochondria. Biochem J 2001; 359: 537–546.

    PubMed  CAS  Google Scholar 

  101. Zhang XD, Gillespie SK, Hersey P. Staurosporine induces apoptosis of melanoma by both caspase-dependent and -independent apoptotic pathways. Mol Cancer Ther 2004; 3: 187–197.

    PubMed  CAS  Google Scholar 

  102. Perez-Galan P, Marzo I, Giraldo P, et al. Role of caspases and apoptosis-inducing factor (AIF) in cladribine-induced apoptosis of B cell chronic lymphocytic leukemia. Leukemia 2002; 16: 2106–2114.

    PubMed  CAS  Google Scholar 

  103. Bidere N, Lorenzo HK, Carmona S, et al. Cathepsin D triggers Bax activation, resulting in selective apoptosis-inducing factor (AIF) relocation in T lymphocytes entering the early commitment phase to apoptosis. J Biol Chem 2003; 278: 31401–31411.

    PubMed  CAS  Google Scholar 

  104. Alonso M, Tamasdan C, Miller DC, Newcomb EW. Flavopiridol induces apoptosis in glioma cell lines independent of retinoblastoma and p53 tumor suppressor pathway alterations by a caspase-independent pathway. Mol Cancer Ther 2003; 2: 139–150.

    PubMed  CAS  Google Scholar 

  105. Carter BZ, Kornblau SM, Tsao T, et al. Caspase-independent cell death in AML: caspase inhibition in vitro with pan-caspase inhibitors or in vivo by XIAP or Survivin does not affect cell survival or prognosis. Blood 2003; 102: 4179–4186.

    PubMed  CAS  Google Scholar 

  106. Konopleva M, Tsao T, Estrov Z, et al. The synthetic triterpenoid 2-cyano-3,12-dioxooleana-1,9-dien-28-oic acid induces caspase-dependent and -independent apoptosis in acute myelogenous leukemia. Cancer Res 2004; 64: 7927–7935.

    PubMed  CAS  Google Scholar 

  107. Samudio I, Konopleva M, Hail N Jr., et al. 2-Cyano-3,12-dioxooleana-1,9-dien-28-imidazolide (CDDO-Im) directly targets mitochondrial glutathione to induce apoptosis in pancreatic cancer. J Biol Chem 2005; 280: 36273–36282.

    PubMed  CAS  Google Scholar 

  108. Song Z, McCall K, Steller H. DCP-1, a Drosophila cell death protease essential for development. Science 1997; 275: 536–540.

    PubMed  CAS  Google Scholar 

  109. Shaham S, Horvitz HR. Developing Caenorhabditis elegans neurons may contain both cell-death protective and killer activities. Genes Dev 1996; 10: 578–591.

    PubMed  CAS  Google Scholar 

  110. Weil M, Jacobson MD, Raff MC. Are caspases involved in the death of cells with a transcriptionally inactive nucleus? Sperm and chicken erythrocytes. J Cell Sci 1998; 111: 2707–2715.

    PubMed  CAS  Google Scholar 

  111. Manolagas SC. Birth and death of bone cells: Basic regulatory mechanisms and implications for the pathogenesis and treatment of osteoporosis. Endocr Rev 2000; 21: 115–137.

    PubMed  CAS  Google Scholar 

  112. Polakowska RR, Piacentini M, Bartlett R, Goldsmith LA, Haake AR. Apoptosis in human skin development: Morphogenesis, periderm, and stem cells. Dev Dyn 1994; 199: 176–188.

    PubMed  CAS  Google Scholar 

  113. Tamada Y, Takama H, Kitamura T, et al. Identification of programmed cell death in normal human skin tissues by using specific labelling of fragmented DNA. Br J Dermatol 1994; 131: 521–524.

    Article  PubMed  CAS  Google Scholar 

  114. Doonan F, Donovan M, Cotter TG. Caspase-independent photoreceptor apoptosis in mouse models of retinal degeneration. J Neurosci 2003; 23: 723–5731.

    Google Scholar 

  115. Turk V, Turk B, Turk D. Lysosomal cysteine proteases: Facts and opportunities. EMBO J 2001; 20: 4629–4633.

    PubMed  CAS  Google Scholar 

  116. Mathiasen IS, Jaattela M. Triggering caspase-independent cell death to combat cancer. Trends Mol Med 2002; 8: 212–220.

    PubMed  CAS  Google Scholar 

  117. Boya P, Gonzalez-Polo RA, Poncet D, et al. Mitochondrial membrane permeabilization is a critical step of lysosome-initiated apoptosis induced by hydroxychloroquine. Oncogene 2003; 22: 3927–3936.

    PubMed  CAS  Google Scholar 

  118. Roberg K. Relocalization of cathepsin D and cytochrome c early in apoptosis revealed by immunoelectron microscopy. Lab Invest 2001; 81: 149–158.

    PubMed  CAS  Google Scholar 

  119. Roberts LR, Adjei PN, Gores GJ. Cathepsins as effector proteases in hepatocyte apoptosis. Cell Biochem Biophys 1999; 30: 71–88.

    PubMed  CAS  Google Scholar 

  120. Zang Y, Beard RL, Chandraratna RA, Kang JX. Evidence of a lysosomal pathway for apoptosis induced by the synthetic retinoid CD437 in human leukemia HL-60 cells. Cell Death Differ 2001; 8: 477–485.

    PubMed  CAS  Google Scholar 

  121. Leist M, Jaattela M. Triggering of apoptosis by cathepsins. Cell Death Differ 2001; 8: 324–326.

    PubMed  CAS  Google Scholar 

  122. Yamashima T. Ca2+-dependent proteases in ischemic neuronal death: A conserved ‘calpain-cathepsin cascade’ from nematodes to primates. Cell Calcium 2004; 36: 285–293.

    PubMed  CAS  Google Scholar 

  123. Foghsgaard L, Wissing D, Mauch D, et al. Cathepsin B acts as a dominant execution protease in tumor cell apoptosis induced by tumor necrosis factor. J Cell Biol 2001; 153: 999–1010.

    PubMed  CAS  Google Scholar 

  124. Chen W, Li N, Chen T, et al. The lysosome-associated apoptosis-inducing protein containing the pleckstrin homology (PH) and FYVE domains (LAPF) representative of a novel family of PH and FYVE domain-containing proteins, induces caspase-independent apoptosis via lysosomal-mitochondrial pathway. J Biol Chem 2005; 40985–40995.

  125. Wang KKW. Calpain and caspase: Can you tell the difference? Trends Neurosci 2000; 23: 20–26.

    PubMed  Google Scholar 

  126. Takano J, Tomioka M, Tsubuki S, et al. Calpain mediates excitotoxic DNA fragmentation via mitochondrial pathways in adult brains: Evidence from calpastatin-mutant mice. J Biol Chem 2005; 280: 16175–16184.

    PubMed  CAS  Google Scholar 

  127. Saito K, Elce JS, Hamos JE, Nixon RA. Widespread activation of calcium-activated neutral proteinase (calpain) in the brain in Alzheimer disease: A potential molecular basis for neuronal degeneration. Proc Natl Acad Sci USA 1993; 90: 2628–2632.

    PubMed  CAS  Google Scholar 

  128. Nixon RA, Saito KI, Grynspan F, et al. Calcium-activated neutral proteinase (calpain) system in aging and Alzheimer’s disease. Ann NY Acad Sci 1994; 747: 77–91.

    Article  PubMed  CAS  Google Scholar 

  129. Mouatt-Prigent A, Karlsson JO, Agid Y, Hirsch EC. Increased M-calpain expression in the mesencephalon of patients with Parkinson’s disease but not in other neurodegenerative disorders involving the mesencephalon: A role in nerve cell death? Neuroscience 1996; 73: 979–987.

    PubMed  CAS  Google Scholar 

  130. Wang KK, Posmantur R, Nadimpalli R, et al. Caspase-mediated fragmentation of calpain inhibitor protein calpastatin during apoptosis. Arch Biochem Biophys 1998; 356: 187–196.

    PubMed  CAS  Google Scholar 

  131. Porn-Ares MI, Samali A, Orrenius S. Cleavage of the calpain inhibitor, calpastatin, during apoptosis. Cell Death Differ 1998; 5: 1028–1033.

    PubMed  CAS  Google Scholar 

  132. Waterhouse NJ, Finucane DM, Green DR, et al. Calpain activation is upstream of caspases in radiation-induced apoptosis. Cell Death Differ 1998; 5: 1051–1061.

    PubMed  CAS  Google Scholar 

  133. Wood DE, Newcomb EW. Caspase-dependent activation of calpain during drug-induced apoptosis. J Biol Chem 1999; 274: 8309–8315.

    PubMed  CAS  Google Scholar 

  134. Heibein JA, Goping IS, Barry M, et al. Granzyme B-mediated cytochrome c release is regulated by the Bcl-2 family members Bid and Bax. J Exp Med 2000; 192: 1391–1402.

    PubMed  CAS  Google Scholar 

  135. Heibein JA, Barry M, Motyka B, Bleackley RC. Granzyme B-induced loss of mitochondrial inner membrane potential (ΔΨm) and cytochrome c release are caspase independent. J Immunol 1999; 163: 4683–4693.

    PubMed  CAS  Google Scholar 

  136. Waterhouse NJ, Sedelies KA, Browne KA, et al. A central role for Bid in granzyme B-induced apoptosis. J Biol Chem 2005; 280: 4476–4482.

    PubMed  CAS  Google Scholar 

  137. Han J, Goldstein LA, Gastman BR, Froelich CJ, Yin XM, Rabinowich H. Degradation of Mcl-1 by granzyme B: Implications for Bim-mediated mitochondrial apoptotic events. J Biol Chem 2004; 279: 22020–22029.

    PubMed  CAS  Google Scholar 

  138. Han J, Goldstein LA, Gastman BR, Rabinovitz A, Rabinowich H. Disruption of MCL-1/BIM complex in granzyme B-mediated mitochondrial apoptosis. J Biol Chem 2005; 280: 16383–16392.

    PubMed  CAS  Google Scholar 

  139. Gray CW, Ward RV, Karran E, et al. Characterization of human HtrA2, a novel serine protease involved in the mammalian cellular stress response. Eur J Biochem 2000; 267: 5699–5710.

    PubMed  CAS  Google Scholar 

  140. Faccio L, Fusco C, Chen A, Martinotti S, Bonventre JV, Zervos AS. Characterization of a novel human serine protease that has extensive homology to bacterial heat shock endoprotease HtrA and is regulated by kidney ischemia. J Biol Chem 2000; 275: 2581–2588.

    PubMed  CAS  Google Scholar 

  141. van Loo G, Van Gurp M, Depuydt B, et al. The serine protease Omi/HtrA2 is released from mitochondria during apoptosis. Omi/HtrA2 interacts with caspase-inhibitor XIAP and induces enhanced caspase activity. Cell Death Differ 2002; 9: 20–27.

    PubMed  Google Scholar 

  142. Sekine K, Hao Y, Suzuki Y, Takahashi R, Tsuruo T, Naito M. HtrA2 cleaves Apollon and induces cell death by IAP-binding motif in Apollon-deficient cells. Biochem Biophys Res Commun 2005; 330: 279–285.

    PubMed  CAS  Google Scholar 

  143. Yang X, Xing H, Gao Q, et al. Regulation of HtrA2/Omi by X-linked inhibitor of apoptosis protein in chemoresistance in human ovarian cancer cells. Gynecol Oncol 2005; 97: 413–421.

    PubMed  CAS  Google Scholar 

  144. Cilenti L, Soundarapandian MM, Kyriazis GA, et al. Regulation of HAX-1 anti-apoptotic protein by Omi/HtrA2 protease during cell death. J Biol Chem 2004; 279: 50295–50301.

    PubMed  CAS  Google Scholar 

  145. Cilenti L, Lee Y, Hess S, et al. Characterization of a novel and specific inhibitor for the pro-apoptotic protease Omi/HtrA2. J Biol Chem 2003; 278: 11489–11494.

    PubMed  CAS  Google Scholar 

  146. Li W, Srinivasula SM, Chai J, et al. Structural insights into the pro-apoptotic function of mitochondrial serine protease HtrA2/Omi. Nat Struct Biol 2002; 9: 436–441.

    PubMed  CAS  Google Scholar 

  147. Hegde R, Srinivasula SM, Zhang Z, et al. Identification of Omi/HtrA2 as a mitochondrial apoptotic serine protease that disrupts inhibitor of apoptosis protein-caspase interaction. J Biol Chem 2002; 277: 432–438.

    PubMed  CAS  Google Scholar 

  148. Verhagen AM, Silke J, Ekert PG, et al. HtrA2 promotes cell death through its serine protease activity and its ability to antagonize inhibitor of apoptosis proteins. J Biol Chem 2002; 277: 445–454.

    PubMed  CAS  Google Scholar 

  149. Distelhorst CW. Recent insights into the mechanism of glucocorticosteroid-induced apoptosis. Cell Death Differ 2002; 9: 6–19.

    PubMed  CAS  Google Scholar 

  150. Hong SJ, Dawson TM, Dawson VL. Nuclear and mitochondrial conversations in cell death: PARP-1 and AIF signaling. Trends Pharmacol Sci 2004; 25: 259–264.

    PubMed  CAS  Google Scholar 

  151. Susin SA, Lorenzo HK, Zamzami N, et al. Molecular characterization of mitochondrial apoptosis-inducing factor. Nature 1999; 397: 441–446.

    PubMed  CAS  Google Scholar 

  152. Wang X, Yang C, Chai J, Shi Y, Xue D. Mechanisms of AIF-mediated apoptotic DNA degradation in Caenorhabditis elegans. Science 2002; 298: 1587–1592.

    PubMed  CAS  Google Scholar 

  153. Susin SA, Daugas E, Ravagnan L, et al. Two distinct pathways leading to nuclear apoptosis. J Exp Med 2000; 192: 571–580.

    PubMed  CAS  Google Scholar 

  154. Pardo J, Perez-Galan P, Gamen S, et al. A role of the mitochondrial apoptosis-inducing factor in granulysin-induced apoptosis. J Immunol 2001; 167: 1222–1229.

    PubMed  CAS  Google Scholar 

  155. Liptay S, Fulda S, Schanbacher M, et al. Molecular mechanisms of sulfasalazine-induced T-cell apoptosis. Br J Pharmacol 2002; 137: 608–620.

    PubMed  CAS  Google Scholar 

  156. Cregan SP, Fortin A, MacLaurin JG, et al. Apoptosis-inducing factor is involved in the regulation of caspase-independent neuronal cell death. J Cell Biol 2002; 158: 507–517.

    PubMed  CAS  Google Scholar 

  157. Arnoult D, Gaume B, Karbowski M, Sharpe JC, Cecconi F, Youle RJ. Mitochondrial release of AIF and EndoG requires caspase activation downstream of Bax/Bak-mediated permeabilization. EMBO J 2003; 22: 4385–4399.

    PubMed  CAS  Google Scholar 

  158. Carter BZ, Wang RY, Schober WD, Milella M, Chism D, Andreeff M. Targeting Survivin expression induces cell proliferation defect and subsequent cell death involving mitochondrial pathway in myeloid leukemic cells. Cell Cycle 2003; 2: 488–493.

    PubMed  CAS  Google Scholar 

  159. Ferri KF, Jacotot E, Blanco J, et al. Apoptosis control in syncytia induced by the HIV type 1-envelope glycoprotein complex: Role of mitochondria and caspases. J Exp Med 2000; 192: 1081–1092.

    PubMed  CAS  Google Scholar 

  160. Zhang X, Chen J, Graham SH, et al. Intranuclear localization of apoptosis-inducing factor (AIF) and large scale DNA fragmentation after traumatic brain injury in rats and in neuronal cultures exposed to peroxynitrite. J Neurochem 2002; 82: 181–191.

    PubMed  CAS  Google Scholar 

  161. Hisatomi T, Sakamoto T, Murata T, et al. Relocalization of apoptosis-inducing factor in photoreceptor apoptosis induced by retinal detachment in vivo. Am J Pathol 2001; 158: 1271–1278.

    PubMed  CAS  Google Scholar 

  162. Mate MJ, Ortiz-Lombardia M, Boitel B, et al. The crystal structure of the mouse apoptosis-inducing factor AIF. Nat Struct Biol 2002; 9: 442–446.

    PubMed  CAS  Google Scholar 

  163. Cande C, Cecconi F, Dessen P, Kroemer G. Apoptosis-inducing factor (AIF): Key to the conserved caspase-independent pathway of cell death. J Cell Sci 2002; 115: 4727–4734.

    PubMed  CAS  Google Scholar 

  164. Ye H, Cande C, Stephanou NC, et al. DNA binding is required for the apoptogenic action of apoptosis inducing factor. Nat Struct Biol 2002; 9: 680–684.

    PubMed  CAS  Google Scholar 

  165. Miramar MD, Costantini P, Ravagnan L, et al. NADH oxidase activity of mitochondrial apoptosis-inducing factor. J Biol Chem 2001; 276: 16391–16398.

    PubMed  CAS  Google Scholar 

  166. Vahsen N, Cande C, Dupaigne P, et al. Physical interaction of apoptosis-inducing factor with DNA and RNA. Oncogene 2005; In Press.

  167. Cande C, Vahsen N, Kouranti I, et al. AIF and cyclophilin A cooperate in apoptosis-associated chromatinolysis. Oncogene 2004; 23: 1514–1521.

    PubMed  CAS  Google Scholar 

  168. Van Wijk SJ, Hageman GJ. Poly(ADP-ribose) polymerase-1 mediated caspase-independent cell death after ischemia/reperfusion. Free Radic Biol Med 2005; 39: 81–90.

    PubMed  Google Scholar 

  169. Ravagnan L, Gurbuxani S, Susin SA, et al. Heat-shock protein 70 antagonizes apoptosis-inducing factor. Nat Cell Biol 2001; 3: 839–843.

    PubMed  CAS  Google Scholar 

  170. Garrido C, Schmitt E, Cande C, Vahsen N, Parcellier A, Kroemer G. HSP27 and HSP70: Potentially oncogenic apoptosis inhibitors. Cell Cycle 2003; 2: 579–584.

    PubMed  CAS  Google Scholar 

  171. Maloney A, Clarke PA, Workman P. Genes and proteins governing the cellular sensitivity to HSP90 inhibitors: A mechanistic perspective. Curr Cancer Drug Targets 2003; 3: 331–341.

    PubMed  CAS  Google Scholar 

  172. Nylandsted J, Brand K, Jaattela M. Heat shock protein 70 is required for the survival of cancer cells. Ann NY Acad Sci 2000; 926: 122–125.

    Article  PubMed  CAS  Google Scholar 

  173. Wegele H, Muller L, Buchner J. Hsp70 and Hsp90–a relay team for protein folding. Rev Physiol Biochem Pharmacol 2004; 151: 1–44.

    PubMed  CAS  Google Scholar 

  174. Klein JA, Longo-Guess CM, Rossmann MP, et al. The Harlequin mouse mutation downregulates apoptosis-inducing factor. Nature 2002; 419: 367–374.

    PubMed  CAS  Google Scholar 

  175. Urbano A, Lakshmanan U, Choo PH, et al. AIF suppresses chemical stress-induced apoptosis and maintains the transformed state of tumor cells. EMBO J 2005; 24: 2815–2826.

    PubMed  CAS  Google Scholar 

  176. Low RL. Mitochondrial Endonuclease G function in apoptosis and mtDNA metabolism: A historical perspective. Mitochondrion 2003; 2: 225–236.

    PubMed  CAS  Google Scholar 

  177. Li LY, Lou X, Wang X. Endonuclease G is an apoptotic DNase when released from mitochondria. Nature 2001; 412: 95–99.

    PubMed  CAS  Google Scholar 

  178. van Loo G, Schotte P, Van Gurp M, et al. Endonuclease G: A mitochondrial protein released in apoptosis and involved in caspase-independent DNA degradation. Cell Death Differ 2001; 8: 1136–1142.

    PubMed  Google Scholar 

  179. Widlak P, Li LY, Wang X, T GW. Action of recombinant human apoptotic endonuclease G on naked DNA and chromatin substrates: Cooperation with exonuclease and DNase I. J Biol Chem 2001; 276: 48404–48409.

    PubMed  CAS  Google Scholar 

  180. Tallini G. Oncocytic tumors. Virchows Arch 1998; 433: 5–12.

    PubMed  CAS  Google Scholar 

  181. Chang NS, Pratt N, Heath J, et al. Hyaluronidase induction of a WW domain-containing oxidoreductase that enhances tumor necrosis factor cytotoxicity. J Biol Chem 2001; 276: 3361–3370.

    PubMed  CAS  Google Scholar 

  182. Bednarek AK, Laflin KJ, Daniel RL, Liao Q, Hawkins KA, Aldaz CM. WWOX, a novel WW domain-containing protein mapping to human chromosome 16q23.3-24.1, a region frequently affected in breast cancer. Cancer Res 2000; 60: 2140–2145.

    PubMed  CAS  Google Scholar 

  183. Ried K, Finnis M, Hobson L, et al. Common chromosomal fragile site FRA16D sequence: Identification of the FOR gene spanning FRA16D and homozygous deletions and translocation breakpoints in cancer cells. Hum Mol Genet 2000; 9: 1651–1663.

    PubMed  CAS  Google Scholar 

  184. Chang NS, Doherty J, Ensign A, et al. Molecular mechanisms underlying WOX1 activation during apoptotic and stress responses. Biochem Pharmacol 2003; 66: 1347–1354.

    PubMed  CAS  Google Scholar 

  185. Wu M, Xu L-G, Li X, Zhai Z, Shu H-B. AMID, an apoptosis-inducing factor-homologous mitochondrion-associated protein, induces caspase-independent apoptosis. J Biol Chem 2002; 277: 25617–25623.

    PubMed  CAS  Google Scholar 

  186. Ohiro Y, Garkavtsev I, Kobayashi S, et al. A novel p53-inducible apoptogenic gene, PRG3, encodes a homologue of the apoptosis-inducing factor (AIF). FEBS Lett 2002; 524: 163–171.

    PubMed  CAS  Google Scholar 

  187. Marshall KR, Gong M, Wodke L, et al. The human apoptosis-inducing protein AMID is an oxidoreductase with a modified flavin cofactor and DNA binding activity. J Biol Chem 2005; 280: 30735–30740.

    PubMed  CAS  Google Scholar 

  188. Nur-E-Kamal A, Gross SR, Pan Z, Balklava Z, Ma J, Liu LF. Nuclear translocation of cytochrome c during apoptosis. J Biol Chem 2004; 279: 24911–24914.

    PubMed  CAS  Google Scholar 

  189. Forsberg AJ, Kagan VE, Schroit AJ. Thiol oxidation enforces phosphatidylserine externalization in apoptosis-sensitive and -resistant cells through a ΔΨm/cytochrome c release-dependent mechanism. Antioxid Redox Signal 2004; 6: 203–208.

    PubMed  CAS  Google Scholar 

  190. Kagan VE, Fabisiak JP, Shvedova AA, et al. Oxidative signaling pathway for externalization of plasma membrane phosphatidylserine during apoptosis. FEBS Lett 2000; 477: 1–7.

    PubMed  CAS  Google Scholar 

  191. Kagan VE, Gleiss B, Tyurina YY, et al. A role for oxidative stress in apoptosis: Oxidation and externalization of phosphatidylserine is required for macrophage clearance of cells undergoing Fas-mediated apoptosis. J Immunol 2002; 169: 487–499.

    PubMed  CAS  Google Scholar 

  192. Platoshyn O, Zhang S, McDaniel SS, Yuan JX. Cytochrome c activates K+ channels before inducing apoptosis. Am J Physiol Cell Physiol 2002; 283: C1298–C1305.

    PubMed  CAS  Google Scholar 

  193. Turrens JF. Mitochondrial formation of reactive species. J Physiol 2003; 522: 335–344.

    Google Scholar 

  194. Skulachev VP. Mitochondrial physiology and pathology: Concepts of programmed cell death of organelles, cells, and organisms. Mol Aspects Med 1999; 20: 139–184.

    PubMed  CAS  Google Scholar 

  195. Chance B, Sies H, Boveris A. Hydroperoxide metabolism in mammalian organs. Physiol Rev 1979; 59: 527–605.

    PubMed  CAS  Google Scholar 

  196. Fleury C, Mignotte B, Vayssière J-L. Mitochondrial reactive species in cell death signaling. Biochimie 2002; 84: 131–141.

    PubMed  CAS  Google Scholar 

  197. Hail N Jr. Lotan R. Mitochondrial respiration is uniquely associated with the prooxidant and apoptotic effects of N-(4-hydroxyphenyl)retinamide. J Biol Chem 2001; 276: 45614–45621.

    PubMed  CAS  Google Scholar 

  198. Hail N Jr., Mechanisms of vanilloid-induced apoptosis. Apoptosis 2003; 8: 251–262.

    PubMed  CAS  Google Scholar 

  199. Skulachev VP. Why are mitochondria involved in apoptosis? FEBS Lett 1996; 397: 7–10.

    PubMed  CAS  Google Scholar 

  200. Crompton M. The mitochondrial permeability transition pore and its role in cell death. Biochem J 1999; 341: 233–249.

    PubMed  CAS  Google Scholar 

  201. Horn TF, Wolf G, Duffy S, Weiss S, Keilhoff G, MacVicar BA. Nitric oxide promotes intracellular calcium release from mitochondria in striatal neurons. FASEB J 2002; 16: 1611–1622.

    PubMed  CAS  Google Scholar 

  202. Packer MA, Scarlett JL, Martin SW, Murphy MP. Induction of the mitochondrial permeability transition by peroxynitrite. Biochem Soc Trans 1997; 25: 909–914.

    PubMed  CAS  Google Scholar 

  203. Solenski NJ, Kostecki VK, Dovey S, Periasamy A. Nitric-oxide-induced depolarization of neuronal mitochondria: Implications for neuronal cell death. Mol Cell Neurosci 2003; 24: 1151–1169.

    PubMed  CAS  Google Scholar 

  204. Bellosillo B, Villamor N, Lopez-Guillermo A, et al. Spontaneous and drug-induced apoptosis is mediated by conformational changes of Bax and Bak in B-cell chronic lymphocytic leukemia. Blood 2002; 100: 1810–1816.

    PubMed  CAS  Google Scholar 

  205. Boya P, Morales MC, Gonzalez-Polo RA, et al. The chemopreventive agent N-(4-hydroxyphenyl)retinamide induces apoptosis through a mitochondrial pathway regulated by proteins from the Bcl-2 family. Oncogene 2003; 22: 6220–6230.

    PubMed  CAS  Google Scholar 

  206. Cuisnier O, Serduc R, Lavieille JP, Longuet M, Reyt E, Riva C. Chronic hypoxia protects against gamma-irradiation-induced apoptosis by inducing bcl-2 up-regulation and inhibiting mitochondrial translocation and conformational change of bax protein. Int J Oncol 2003; 23: 1033–1041.

    PubMed  CAS  Google Scholar 

  207. Kim J-Y, Kim Y-H, Chang I, et al. Resistance of mitochondrial DNA-deficient cells to TRAIL: Role of Bax in TRAIL-induced apoptosis. Oncogene 2002; 21: 3139–3148.

    PubMed  CAS  Google Scholar 

  208. Kim M, Park SY, Pai HS, Kim TH, Billiar TR, Seol DW. Hypoxia inhibits tumor necrosis factor-related apoptosis-inducing ligand-induced apoptosis by blocking Bax translocation. Cancer Res 2004; 64: 4078–4081.

    PubMed  CAS  Google Scholar 

  209. Zheng Y, Yamaguchi H, Tian C, et al. Arsenic trioxide (As2O3) induces apoptosis through activation of Bax in hematopoietic cells. Oncogene 2005; 24: 3339–3347.

    PubMed  CAS  Google Scholar 

  210. Moldovan L, Moldovan NI. Oxygen free radicals and redox biology of organelles. Histochem Cell Biol 2004; 122: 395–412.

    PubMed  CAS  Google Scholar 

  211. Jacobson J, Duchen MR. Mitochondrial oxidative stress and cell death in astrocytes–requirement for stored Ca2+ and sustained opening of the permeability transition pore. J Cell Sci 2002; 115: 1175–1188.

    PubMed  CAS  Google Scholar 

  212. Antunes F, Cadenas E, Brunk UT. Apoptosis induced by exposure to a low steady-state concentration of H2O2 is a consequence of lysosomal rupture. Biochem J 2001; 356: 549–555.

    PubMed  CAS  Google Scholar 

  213. Boya P, Andreau K, Poncet D, et al. Lysosomal membrane permeabilization induces cell death in a mitochondrion-dependent fashion. J Exp Med 2003; 197: 1323–1334.

    PubMed  CAS  Google Scholar 

  214. Nilsson E, Ghassemifar R, Brunk UT. Lysosomal heterogeneity between and within cells with respect to resistance against oxidative stress. Histochem J 1997; 29: 857–865.

    PubMed  CAS  Google Scholar 

  215. Stoka V, Turk B, Schendel SL, et al. Lysosomal protease pathways to apoptosis. Cleavage of bid, not pro-caspases, is the most likely route. J Biol Chem 2001; 276: 3149–3157.

    PubMed  CAS  Google Scholar 

  216. Fadeel B, Kagan VE. Apoptosis and macrophage clearance of neutrophils: regulation by reactive oxygen species. Redox Rep 2003; 8: 143–150.

    PubMed  CAS  Google Scholar 

  217. Fadeel B, Ahlin A, Henter JI, Orrenius S, Hampton MB. Involvement of caspases in neutrophil apoptosis: Regulation by reactive oxygen species. Blood 1998; 92: 4808–4818.

    PubMed  CAS  Google Scholar 

  218. Fabisiak JP, Tyurina YY, Tyurin VA, Lazo JS, Kagan VE. Random versus selective membrane phospholipid oxidation in apoptosis: role of phosphatidylserine. Biochemistry 1998; 37: 13781–13790.

    PubMed  CAS  Google Scholar 

  219. Uthaisang W, Nutt LK, Orrenius S, Fadeel B. Phosphatidylserine exposure in Fas type I cells is mitochondria-dependent. FEBS Lett 2003; 545: 110–114.

    PubMed  CAS  Google Scholar 

  220. Shimizu T, Numata T, Okada Y. A role of reactive oxygen species in apoptotic activation of volume-sensitive Cl- channel. Proc Natl Acad Sci USA 2004; 101: 6770–6773.

    PubMed  CAS  Google Scholar 

  221. Zamzami N, Marchetti P, Castedo M, et al. Sequential reduction of mitochondrial transmembrane potential and generation of reactive oxygen species in early programmed cell death. J Exp Med 1995; 182: 367–377.

    PubMed  CAS  Google Scholar 

  222. McConkey DJ, Orrenius S. The role of calcium in the regulation of apoptosis. J Leukoc Biol 1996; 59: 775–783.

    PubMed  CAS  Google Scholar 

  223. Xie Q, Khaoustov VI, Chung CC, et al. Effect of tauroursodeoxycholic acid on endoplasmic reticulum stress-induced caspase-12 activation. Hepatology 2002; 36: 592–601.

    PubMed  CAS  Google Scholar 

  224. Nakagawa T, Yuan J. Cross-talk between two cysteine protease families. Activation of caspase-12 by calpain in apoptosis. J Cell Biol 2000; 150: 887–894.

    PubMed  CAS  Google Scholar 

  225. Nakagawa T, Zhu H, Morishima N, et al. Caspase-12 mediates endoplasmic-reticulum-specific apoptosis and cytotoxicity by amyloid-β. Nature 2000; 403: 98–103.

    PubMed  CAS  Google Scholar 

  226. Jimbo A, Fujita E, Kouroku Y, et al. ER stress induces caspase-8 activation, stimulating cytochrome c release and caspase-9 activation. Exp Cell Res 2003; 283: 156–166.

    PubMed  CAS  Google Scholar 

  227. Hajnoczky G, Davies E, Madesh M. Calcium signaling and apoptosis. Biochem Biophys Res Commun 2003; 304: 445–454.

    PubMed  CAS  Google Scholar 

  228. Schreck R, Rieber P, Baeuerle PA. Reactive oxygen intermediates as apparently widely used messengers in the activation of the NF-κB transcription factor and HIV-1. EMBO J 1991; 10: 2247–2258.

    PubMed  CAS  Google Scholar 

  229. Szabadkai G, Simoni AM, Rizzuto R. Mitochondrial Ca2+ uptake requires sustained Ca2+ release from the endoplasmic reticulum. J Biol Chem 2003; 278: 15153–15161.

    PubMed  CAS  Google Scholar 

  230. Gunter TE, Gunter KK. Uptake of calcium by mitochondria: Transport and possible function. IUBMB Life 2001; 52: 197–204.

    Article  PubMed  CAS  Google Scholar 

  231. Hail N Jr., Konopleva M, Sporn M, Lotan R, Andreeff M. Evidence supporting a role for calcium in apoptosis induction by the synthetic triterpenoid 2-cyano-3,12-dioxooleana-1,9-dien-28-oic acid (CDDO). J Biol Chem 2004; 279: 11179–11187.

    PubMed  CAS  Google Scholar 

  232. James AM, Murphy MP. How mitochondrial damage affects cell function. J Biomed Sci 2002; 9: 475–487.

    PubMed  CAS  Google Scholar 

  233. Sherer TB, Trimmer PA, Parks JK, Tuttle JB. Mitochondrial DNA-depleated neurobalstoma (Rho0) cells exhibit altered calcium signaling. Biochim Biophys Acta 2003; 1496: 341–355.

    Google Scholar 

  234. Boehning D, Patterson RL, Sedaghat L, Glebova NO, Kurosaki T, Snyder SH. Cytochrome c binds to inositol (1,4,5) trisphosphate receptors, amplifying calcium-dependent apoptosis. Nat Cell Biol 2003; 5: 1051–1061.

    PubMed  CAS  Google Scholar 

  235. Ferrari D, Pinton P, Szabadkai G, et al. Endoplasmic reticulum, Bcl-2 and Ca2+ handling in apoptosis. Cell Calcium 2002; 32: 413–420.

    PubMed  CAS  Google Scholar 

  236. Eisele K, Lang PA, Kempe DS, et al. Stimulation of erythrocyte phosphatidylserine exposure by mercury ions. Toxicol Appl Pharmacol 2005; 116–122.

  237. Balasubramanian K, Schroit AJ. Aminophospholipid asymmetry: A matter of life and death. Annu Rev Physiol 2003; 65: 701–734.

    PubMed  CAS  Google Scholar 

  238. Zwaal RAF, Comfurius P, Bevers EM. Surface exposure of phosphatidylserine in pathological cells. Cell Mol Life Sci 2005; 62: 971–988.

    PubMed  CAS  Google Scholar 

  239. Smyth MJ, Perry DK, Zhang J, Poirier GG, Hannun YA, Obeid LM. prICE: A downstream target for ceramide-induced apoptosis and for the inhibitory action of Bcl-2. Biochem J 1996; 316: 25–28.

    PubMed  CAS  Google Scholar 

  240. Dbaibo GS, Perry DK, Gamard CJ, et al. Cytokine response modifier A (CrmA) inhibits ceramide formation in response to tumor necrosis factor (TNF)-α: CrmA and Bcl-2 target distinct components in the apoptotic pathway. J Exp Med 1997; 185: 481–490.

    PubMed  CAS  Google Scholar 

  241. Goswami R, Kilkus J, Scurlock B, Dawson G. CrmA protects against apoptosis and ceramide formation in PC12 cells. Neurochem Res 2002; 27: 735–741.

    PubMed  CAS  Google Scholar 

  242. Andrieu-Abadie N, Gouaze V, Salvayre R, Levade T. Ceramide in apoptosis signaling: Relationship with oxidative stress. Free Radic Biol Med 2001; 31: 717–728.

    PubMed  CAS  Google Scholar 

  243. Fernandez-Checa JC. Redox regulation and signaling lipids in mitochondrial apoptosis. Biochem Biophys Res Commun 2003; 304: 471–479.

    PubMed  CAS  Google Scholar 

  244. DiPietrantonio AM, Hsieh TC, Olson SC, Wu JM. Regulation of G1/S transition and induction of apoptosis in HL-60 leukemia cells by fenretinide (4HPR). Int J Cancer 1998; 78: 53–61.

    PubMed  CAS  Google Scholar 

  245. Erdreich-Epstein A, Tran LB, Bowman NN, et al. Ceramide signaling in fenretinide-induced endothelial cell apoptosis. J Biol Chem 2002; 277: 49531–49537.

    PubMed  CAS  Google Scholar 

  246. Rehman F, Shanmugasundaram P, Schrey MP. Fenretinide stimulates redox-sensitive ceramide production in breast cancer cells: Potential role in drug-induced cytotoxicity. Br J Cancer 2004; 91: 1821–1828.

    PubMed  CAS  Google Scholar 

  247. Maurer B, Metelitsa L, Seeger R, Cabot M, Reynolds C. Increased of ceramide and induction of mixed apoptosis/necrosis by N-(4-hydroxyphenyl)retinamide in neuroblastoma cell lines. J Natl Cancer Inst 1999; 91: 1138–1146.

    PubMed  CAS  Google Scholar 

  248. Lovat PE, Di Sano F, Corazzari M, et al. Gangliosides link the acidic sphingomyelinase-mediated induction of ceramide to 12-lipoxygenase-dependent apoptosis of neuroblastoma in response to fenretinide. J Natl Cancer Inst 2004; 96: 1288–1299.

    PubMed  CAS  Google Scholar 

  249. Mimeault M. New advances on structural and biological functions of ceramide in apoptotic/necrotic cell death and cancer. FEBS Lett 2002; 530: 9–16.

    PubMed  CAS  Google Scholar 

  250. France-Lanord V, Brugg B, Michel PP, Agid Y, Ruberg M. Mitochondrial free radical signal in ceramide-dependent apoptosis: A putative mechanism for neuronal death in Parkinson’s disease. J Neurochem 1997; 69: 12–21.

    Google Scholar 

  251. Gentil B, Grimot F, Riva C. Commitment to apoptosis by ceramides depends on mitochondrial respiratory function, cytochrome c release and caspase-3 activation in Hep-G2 cells. Mol Cell Biochem 2003; 254: 203–210.

    PubMed  CAS  Google Scholar 

  252. Quillet-Mary A, Jaffrezou JP, Mansat V, Bordier C, Naval J, Laurent G. Implication of mitochondrial hydrogen peroxide generation in ceramide-induced apoptosis. J Biol Chem 1997;

  253. Di Paola M, Cocco T, Lorusso M. Ceramide interaction with the respiratory chain of heart mitochondria. Biochemistry 2000; 39: 6660–6668.

    PubMed  Google Scholar 

  254. Gudz TI, Tserng KY, Hoppel CL. Direct inhibition of mitochondrial respiratory chain complex III by cell-permeable ceramide. J Biol Chem 1997; 272: 24154–24158.

    PubMed  CAS  Google Scholar 

  255. Ghafourifar P, Klein SD, Schucht O, et al. Ceramide induces cytochrome c release from isolated mitochondria. Importance of mitochondrial redox state. J Biol Chem 1999; 274: 6080–6084.

    PubMed  CAS  Google Scholar 

  256. Darios F, Corti O, Lucking CB, et al. Parkin prevents mitochondrial swelling and cytochrome c release in mitochondria-dependent cell death. Hum Mol Genet 2003; 12: 517–526.

    PubMed  Google Scholar 

  257. Garcia-Ruiz C, Colell A, Mari M, Morales A, Fernandez-Checa JC. Direct effect of ceramide on the mitochondrial electron transport chain leads to generation of reactive oxygen species. Role of mitochondrial glutathione. J Biol Chem 1997; 272: 11369–11377.

    PubMed  CAS  Google Scholar 

  258. Lang PA, Kempe DS, Tanneur V, et al. Stimulation of erythrocyte ceramide formation by platelet-activating factor. J Cell Sci 2005; 118: 1233–1243.

    PubMed  CAS  Google Scholar 

  259. Malisan F, Testi R. GD3 ganglioside and apoptosis. Biochim Biophys Acta 2002; 1585: 179–187.

    PubMed  CAS  Google Scholar 

  260. De Maria R, Lenti L, Malisan F, et al. Requirement for GD3 ganglioside in CD95- and ceramide-induced apoptosis. Science 1997; 277: 1652–1655.

    PubMed  Google Scholar 

  261. Garcia-Ruiz C, Colell A, Morales A, Calvo M, Enrich C, Fernandez-Checa JC. Trafficking of ganglioside GD3 to mitochondria by tumor necrosis factor-α. J Biol Chem 2002; 277: 36443–36448.

    PubMed  CAS  Google Scholar 

  262. Garcia-Ruiz C, Colell A, Paris R, Fernandez-Checa JC. Direct interaction of GD3 ganglioside with mitochondria generates reactive oxygen species followed by mitochondrial permeability transition, cytochrome c release, and caspase activation. FASEB J 2000; 14: 847–858.

    PubMed  CAS  Google Scholar 

  263. Rippo MR, Malisan F, Ravagnan L, et al. GD3 ganglioside directly targets mitochondria in a bcl-2-controlled fashion. FASEB J 2000; 14: 2047–2054.

    PubMed  CAS  Google Scholar 

  264. Jaattela M. Escaping cell death: Survival proteins in cancer. Exp Cell Res 1999; 248: 30–43.

    PubMed  CAS  Google Scholar 

  265. Evan GI, Vousden KH. Proliferation, cell cycle and apoptosis in cancer. Nature 2001; 411: 342–348.

    PubMed  CAS  Google Scholar 

  266. Reed JC. Apoptosis-regulating proteins as targets for drug discovery. Trends Mol Med 2001; 7: 314–319.

    PubMed  CAS  Google Scholar 

  267. Carter BZ, Gronda M, Wang Z, et al. Small-molecule XIAP inhibitors derepress downstream effector caspases and induce apoptosis of acute myeloid leukemia cells. Blood 2005; 105: 4043–4050.

    PubMed  CAS  Google Scholar 

  268. Quignon F, De Bels F, Koken M, Feunteun J, Ameisen JC, de The H. PML induces a novel caspase-independent death process. Nat Genet 1998; 20: 259–265.

    PubMed  CAS  Google Scholar 

  269. Jaattela M. Multiple cell death pathways as regulators of tumour initiation and progression. Oncogene 2004; 23: 2746–2756.

    PubMed  Google Scholar 

  270. Joseph B, Marchetti P, Formstecher P, Kroemer G, Lewensohn R, Zhivotovsky B. Mitochondrial dysfunction is an essential step for killing of non-small cell lung carcinomas resistant to conventional treatment. Oncogene 2002; 21: 65–77.

    PubMed  CAS  Google Scholar 

  271. Fehrenbacher N, Jaattela M. Lysosomes as targets for cancer therapy. Cancer Res 2005; 65: 2993–2995.

    PubMed  CAS  Google Scholar 

  272. Sun SY, Hail N Jr., Lotan R. Apoptosis as a novel target for cancer chemoprevention. J Natl Cancer Inst 2004; 96: 662–672.

    Article  PubMed  CAS  Google Scholar 

  273. Vermeulen K, Van Bockstaele DR, Berneman ZN. Apoptosis: Mechanisms and relevance in cancer. Ann Hematol 2005; 84: 627–639.

    PubMed  CAS  Google Scholar 

  274. Schmitt CA, Lowe SW. Apoptosis is critical for drug response in vivo. Drug Resist Updat 2001; 4: 132–134.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Andreeff M.D., Ph.D..

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hail, N., Carter, B.Z., Konopleva, M. et al. Apoptosis effector mechanisms: A requiem performed in different keys. Apoptosis 11, 889–904 (2006). https://doi.org/10.1007/s10495-006-6712-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10495-006-6712-8

Keywords

Navigation