Skip to main content

Advertisement

Log in

Serum leucine-rich alpha-2-glycoprotein-1 binds cytochrome c and inhibits antibody detection of this apoptotic marker in enzyme-linked immunosorbent assay

  • Reports
  • Published:
Apoptosis Aims and scope Submit manuscript

Abstract

Cytochrome c (Cyt c) has been implicated as a serum marker for aberrant apoptosis and, thus, has considerable clinical potential. Using a sandwich enzyme-linked immunosorbent assay (ELISA) we found that the sensitivity of Cyt c detection is reduced in the presence of serum. The inhibitory factor responsible was purified from both fetal bovine serum and human serum employing standard chromatography procedures followed by affinity chromatography on Affi-Gel 10-bound Cyt c. In SDS-PAGE, bands at 44 kD and 50 kD were observed for the bovine and human proteins, respectively. Mass spectrometry analysis identified the serum inhibitory factor as leucine-rich alpha-2-glycoprotein-1 (LRα2GP1). This identification may lead to a modified ELISA to quantify total Cyt c in patients’ sera. LRα2GP1 is the first extracellular ligand for Cyt c that has been identified. A physiological function associated with binding is suggested.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Abbreviations

BLAST:

basic local alignment search tool

BSA:

bovine serum albumin

Cyt c :

cytochrome c

DEAE:

diethylaminoethyl

ELISA:

enzyme-linked immunosorbent assay

HRP:

horseradish peroxidase

mAbs:

monoclonal antibodies

LRα2GP1:

leucine-rich alpha-2-glycoprotein-1

MALDI-TOF MS:

matrix assisted laser desorption ionization time-of-flight mass spectrometry

PBS:

phosphate-buffered saline

SDS-PAGE:

polyacrylamide gel electrophoresis in sodium dodecylsulfate

References

  1. Newmeyer DD, Ferguson-Miller S (2003) Mitochondria: Releasing power for life and unleashing the machineries of death. Cell 112:481–490

    Article  PubMed  CAS  Google Scholar 

  2. Jemmerson R, Dubinsky JM, Brustovetsky N (2005) Cytochrome c release from CNS mitochondria and potential for clinical intervention in apoptosis-mediated CNS diseases. Antiox Redox Signal 7:1158–1172

    Article  CAS  Google Scholar 

  3. Liu X, Kim CN, Yang J, Jemmerson R, Wang X (1996) Induction of apoptotic program in cell-free extracts: requirement for dATP and cytochrome c. Cell 86:147–157

    Article  PubMed  CAS  Google Scholar 

  4. Zou H, Henzel WJ, Liu X, et al (1997) Apaf-1, a human protein homologous to C. elegans CED-4, participates in cytochrome c-dependent activation of caspase-3. Cell 90:405–413

    Article  PubMed  CAS  Google Scholar 

  5. Li P, Nijhawan D, Budihardjo I, et al (1997) Cytochrome c and dATP-dependent formation of Apaf-1/caspase-9 complex initiates an apoptotic protease cascade. Cell 91:479–489

    Article  PubMed  CAS  Google Scholar 

  6. Boehning D, Patterson RL, Sedaghat L, et al (2003) Cytochrome c binds to inositol (1,4,5) trisphosphate receptors, amplifying calcium-dependent apoptosis. Nat Cell Biol 5:1051–1061

    Article  PubMed  CAS  Google Scholar 

  7. Nur-E-Kamal A, Gross SR, Pan Z, Balklava Z, et al (2004) Nuclear translocation of cytochrome c during apoptosis. J Biol Chem 279:24911–24914

    Article  PubMed  CAS  Google Scholar 

  8. Kagan VE, Borisenko GG, Tyurina YY, et al (2004) Oxidative lipidomics of apoptosis: redox catalytic interactions of cytochrome c with cardiolipin and phosphatidylserine. Free Rad Biol Med 37:1963–1985

    Article  PubMed  CAS  Google Scholar 

  9. Jemmerson R, Laplante B, Treeful A (2002) Release of intact, monomeric cytochrome c from apoptotic and necrotic cells. Cell Death Differ. 9:538–548

    Article  PubMed  CAS  Google Scholar 

  10. Renz A, Berdel WE, Kreuter M, Belka C, Schulze-Osthoff K, Los M (2001) Rapid extracellular release of cytochrome c is specific for apoptosis and marks cell death in vivo. Blood 98:1542–1548

    Article  PubMed  CAS  Google Scholar 

  11. Pullerits R, Bokarewa M Jonsson I-M, et al (2005) Extracellular cytochrome c, a mitochondrial apoptosis-related protein, induces arthritis. Rheumatology 44:32–39

    Article  PubMed  CAS  Google Scholar 

  12. Barczyk K, Kreuter M, Pryjma J, et al (2005) Serum cytochrome c indicates in vivo apoptosis and can serve as a prognostic marker during cancer therapy. Int J Cancer 116:167–173

    Article  PubMed  CAS  Google Scholar 

  13. Gvatua NA, Komissarenko SV, Skok MV, et al (1990) Determination of the concentration of cytochrome c and its antibodies in the blood serum for the diagnosis and prognosis of complications in myocardial infarct patients. Ter Arkh 62:58–61

    PubMed  CAS  Google Scholar 

  14. Alleyne T, Joseph J, Sampson V (2001) Cytochrome c detection: a diagnostic marker for myocardial infarction. Appl Biochem Biotech 90:97–105

    Article  CAS  Google Scholar 

  15. Ben-Ari Z, Schmilovotz-Weiss H, Belinki A, et al. (2003) Circulating soluble cytochrome c in liver disease as a marker of apoptosis. J Intern Med 254:168–175

    Article  PubMed  CAS  Google Scholar 

  16. Adachi N, Hirota M, Hamaguchi M, Okamoto K, et al (2004) Serum cytochrome c level as a prognostic indicator in patients with systemic inflammatory response syndrome. Clin Chim Acta 342:127136-

    Article  PubMed  CAS  Google Scholar 

  17. Nunoi H, Mercado MR, Mizukami T, et al (2005) Apoptosis under hypercytokinemia is a possible pathogenesis in influenza-associated encephalopathy. Pediatr Int 47:175–179

    Article  PubMed  CAS  Google Scholar 

  18. Engvall E (1980) Enzyme immunoassay ELISA and EMIT. Meth Enzymol 70:419–439

    Article  PubMed  CAS  Google Scholar 

  19. Urbanski GJ, Margoliash E (1976) The antigenicity of cytochrome c. In: M. Salton, (ed). The immunochemistry of enzymes and their antibodies: J. Wiley and Sons New York pp. 203–226

    Google Scholar 

  20. Goshorn SC, Retzel E, Jemmerson R (1991) Common structural features among monoclonal antibodies binding the same antigenic region of cytochromes. J Biol Chem 266:2134–2142

    PubMed  CAS  Google Scholar 

  21. Minnerath JM, Crump BL, Margoliash E, Jemmerson R (1995) Major and minor epitopes on the self antigen mouse cytochrome c mapped by site-directed mutagenesis. Mol Immunol 32:795–803

    Article  PubMed  CAS  Google Scholar 

  22. Urbanski GJ Margoliash E (1977) Topographic determinants on cytochrome c. I. The complete antigenic structures of rabbit, mouse, and guanaco cytochromes c in rabbits and mice. J Immunol 118:1170–1180

    PubMed  CAS  Google Scholar 

  23. Glatz JF, Veerkamp JH (1983) Removal of fatty acids from serum albumin by Lipidex 1000 chromatography. J Biochem Biophys Methods 8:57–61

    Article  PubMed  CAS  Google Scholar 

  24. Cotter R (1996) Time-of-flight mass spectrometry: Instrumentation and applications in biological research, American Chemical Society

  25. Carlson SS, Mross GA, Wilson AC, et al (1977) Primary structure of mouse, rat, and guinea pig cytochrome c. Biochemistry 16:1437–1442

    Article  PubMed  CAS  Google Scholar 

  26. Brown JR (1975) Structure of bovine serum albumin. Fed Proc 34:591–591

    Google Scholar 

  27. O’Donnell LC, Druhan LJ, Avalos BR (2002) Molecular characterization and expression analysis of leucine-rich α2 glycoprotein, a novel marker of granulocytic differentiation. J Leuk Biol 72:478–485

    CAS  Google Scholar 

  28. Takahashi N, Takahashi Y, Putnam FW (1985) Periodicity of leucine and tandem repetition of a 24-amino acid segment in the primary structure of leucine-rich α2-glycoprotein of human serum. Proc Natl Acad Sci USA 82:1906–1910

    Article  PubMed  CAS  Google Scholar 

  29. Kobe B, Kajava AV (2001) The leucine-rich repeat as a protein recognition motif. Curr Op Struct Biol 11:725–732

    Article  CAS  Google Scholar 

  30. Sanishvili R, Volz KW, Westbrook EM, Margoliash E (1995) The low ionic strength crystal structure of horse cytochomre c at 2.1 Å resolution and comparison with its high ionic strength counterpart. Structure 3:707–716

    Article  PubMed  CAS  Google Scholar 

  31. Spector AA (1975) Fatty acid binding to plasma albumin. J Lipid Res 16:165–179

    PubMed  CAS  Google Scholar 

  32. Tuominen EKJ, Wallace CJA, Kinnunen, PKJ (2002) Phospholipid-cytochrome c interaction. Evidence for the extended lipid anchorage. J Biol Chem 277:8822–8826.

    Article  PubMed  CAS  Google Scholar 

  33. Jemmerson R, Liu J, Hausauer D, Lam K-P, et al. (1999) conformational change in cytochrome c of apoptotic and necrotic cells is detected by monoclonal antibody binding and mimicked by association of the native antigen with synthetic phospholipids vesicles. Biochem 38:3599–3609

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ronald Jemmerson.

Additional information

Supported by: NIH NINDS 5R21-NS45589

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cummings, C., Walder, J., Treeful, A. et al. Serum leucine-rich alpha-2-glycoprotein-1 binds cytochrome c and inhibits antibody detection of this apoptotic marker in enzyme-linked immunosorbent assay. Apoptosis 11, 1121–1129 (2006). https://doi.org/10.1007/s10495-006-8159-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10495-006-8159-3

Keywords

Navigation