Skip to main content

Advertisement

Log in

Apoptotic effect of ethyl-4-isothiocyanatobutanoate is associated with DNA damage, proteasomal activity and induction of p53 and p21cip1/waf1

  • Published:
Apoptosis Aims and scope Submit manuscript

Abstract

The effect of synthetic isothiocyanate ethyl-4-isothiocyanatobutanoate (E-4IB) on survival of mismatch repair-proficient TK6 and -deficient MT1 cell lines as well as the influence of proteasomal inhibitor MG132, caspase inhibitor Z-VAD-fmk, and ATM inhibitor caffeine on E-4IB modulation of cell cycle and apoptosis was evaluated. Flow cytometric analyses of DNA double strand breaks (γ-H2AX), mitotic fraction (phospho-histone H3), cell cycle modulation, apoptosis induction (sub-G0 fraction and fluorescein diacetate staining), and dissipation of transmembrane mitochondrial potential (JC-1 staining) were performed. Western blotting was used for the evaluation of ERK activation, expression of p53, p21cip1/waf1 and GADD45α proteins, as well as PARP fragmentation. Analysis of mitotic nuclei was performed for chromosomal aberrations assessment. MT1 cells were more resistant to E-4IB treatment then TK6 cells (IC50 8 μM vs. 4 μM). In both cell lines E-4IB treatment induced phosphorylation of H2AX, increase of p53 protein level, phospho-histone H3 staining, and G2/M arrest. The sub-G0 fragmentation was accompanied by PARP degradation, decreased mitochondrial transmembrane potential, and diminished p21cip1/waf1 protein expression in TK6 cells. Caspase inhibitor Z-VAD-fmk decreased E-4IB induced sub-G0 fragmentation and extent of apoptosis in TK6 cells, while proteasome inhibitor MG132 increased number of apoptotic cells in both cell lines tested. A number of aberrant metaphases and clastogenic effect of high E-4IB concentration was observed. The synthetic isothiocyanate E-4IB induced DNA strand breaks, increased mitotic fraction and apoptosis potentiated by MG132 inhibitor in both mismatch repair-proficient and -deficient cell lines.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Abbreviations

E-4IB:

Ethyl 4-isothiocyanatobutanoate

ITC:

Isothiocyanate

MMR:

Mismatch repair

NSAID:

Nonsteroidal anti-inflammatory drugs

FITC:

Fluorescein isothiocyanate

FAP:

Familial adenomatous polyposis

HNPCC:

Hereditary non-polyposis colorectal cancer

DSB:

Double strand breaks

ATM:

Ataxia telangiectasia mutated

ATR:

Ataxia telangiectasia-mutated and Rad3-related

GADD45α :

Growth arrest and DNA-damage-inducible, α

References

  1. Bostwick DG, Burke HB, Djakiew D et al (2004) Human prostate cancer risk factors. Cancer 101:2371–2490

    Article  PubMed  CAS  Google Scholar 

  2. Farmer PB, Singh R, Kaur B et al (2003) Molecular epidemiology studies of carcinogenic environmental pollutants. Effects of polycyclic aromatic hydrocarbons (PAHs) in environmental pollution on exogenous and oxidative DNA damage. Mutat Res 544:397–402

    Article  PubMed  CAS  Google Scholar 

  3. Giovannucci E, Rimm EB, Liu Y, Stampfer MJ, Willett WC (2003) A prospective study of cruciferous vegetables and prostate cancer. Cancer Epidemiol Biomarkers Prev 12:1403–1409

    PubMed  CAS  Google Scholar 

  4. Rashidkhani B, Lindblad P, Wolk A (2005) Fruits, vegetables and risk of renal cell carcinoma: a prospective study of Swedish women. Int J Cancer 113:451–455

    Article  PubMed  CAS  Google Scholar 

  5. Nkondjock A, Krewski D, Johnson KC, Ghadirian P (2005) Dietary patterns and risk of pancreatic cancer. Int J Cancer 114:817–823

    Article  PubMed  CAS  Google Scholar 

  6. Cohen JH, Kristal AR, Stanford JL (2000) Fruit and vegetable intakes and prostate cancer risk. J Natl Cancer Inst 92:61–68

    Article  PubMed  CAS  Google Scholar 

  7. Gill S, Sinicrope FA (2005) Colorectal cancer prevention: is an ounce of prevention worth a pound of cure? Semin Oncol 32:24–34

    Article  PubMed  CAS  Google Scholar 

  8. Mathew A, Peters U, Chatterjee N, Kulldorff M, Sinha R (2004) Fat, fiber, fruits, vegetables, and risk of colorectal adenomas. Int J Cancer 108:287–292

    Article  PubMed  CAS  Google Scholar 

  9. Turner F, Smith G, Sachse C et al (2004) Vegetable, fruit and meat consumption and potential risk modifying genes in relation to colorectal cancer. Int J Cancer 112:259–264

    Article  PubMed  CAS  Google Scholar 

  10. Basten GP, Bao Y, Williamson G (2002) Sulforaphane and its glutathione conjugate but not sulforaphane nitrile induce UDP-glucuronosyl transferase (UGT1A1) and glutathione transferase (GSTA1) in cultured cells. Carcinogenesis 23:1399–1404

    Article  PubMed  CAS  Google Scholar 

  11. Bonnesen C, Eggleston IM, Hayes JD (2001) Dietary indoles and isothiocyanates that are generated from cruciferous vegetables can both stimulate apoptosis and confer protection against DNA damage in human colon cell lines. Cancer Res 61:6120–6130

    PubMed  CAS  Google Scholar 

  12. Jakubikova J, Sedlak J, Mithen R, Bao Y (2005) Role of PI3K/Akt and MEK/ERK signaling pathways in sulforaphane-and erucin-induced phase II enzymes and MRP2 transcription, G(2)/M arrest and cell death in Caco-2 cells. Biochem Pharmacol 69:1543–1552

    Article  PubMed  CAS  Google Scholar 

  13. Maheo K, Morel F, Langouet S et al (1997) Inhibition of cytochromes P-450 and induction of glutathione S-transferases by sulforaphane in primary human and rat hepatocytes. Cancer Res 57:3649–3652

    PubMed  CAS  Google Scholar 

  14. Svehlikova V, Wang S, Jakubikova J, Williamson G, Mithen R, Bao Y (2004) Interactions between sulforaphane and apigenin in the induction of UGT1A1 and GSTA1 in CaCo-2 cells. Carcinogenesis 25:1629–1637

    Article  PubMed  CAS  Google Scholar 

  15. Zhang Y, Talalay P (1998) Mechanism of differential potencies of isothiocyanates as inducers of anticarcinogenic Phase 2 enzymes. Cancer Res 58:4632–4639

    PubMed  CAS  Google Scholar 

  16. Conaway CC, Krzeminski J, Amin S, Chung FL (2001) Decomposition rates of isothiocyanate conjugates determine their activity as inhibitors of cytochrome p450 enzymes. Chem Res Toxicol 14:1170–1176

    Article  PubMed  CAS  Google Scholar 

  17. Ye L, Dinkova-Kostova AT, Wade KL, Zhang Y, Shapiro TA, Talalay P (2002) Quantitative determination of dithiocarbamates in human plasma, serum, erythrocytes and urine: pharmacokinetics of broccoli sprout isothiocyanates in humans. Clin Chim Acta 316:43–53

    Article  PubMed  CAS  Google Scholar 

  18. Zhang Y (2001) Molecular mechanism of rapid cellular accumulation of anticarcinogenic isothiocyanates. Carcinogenesis 22:425–431

    Article  PubMed  CAS  Google Scholar 

  19. Chiao JW, Chung F, Krzeminski J et al (2000) Modulation of growth of human prostate cancer cells by the N-acetylcysteine conjugate of phenethyl isothiocyanate. Int J Oncol 16:1215–1219

    PubMed  CAS  Google Scholar 

  20. Powolny A, Takahashi K, Hopkins RG, Loo G (2003) Induction of GADD gene expression by phenethylisothiocyanate in human colon adenocarcinoma cells. J Cell Biochem 90:1128–1139

    Article  PubMed  CAS  Google Scholar 

  21. Stoner GD, Morrissey DT, Heur YH, Daniel EM, Galati AJ, Wagner SA (1991) Inhibitory effects of phenethyl isothiocyanate on N-nitrosobenzylmethylamine carcinogenesis in the rat esophagus. Cancer Res 51:2063–2068

    PubMed  CAS  Google Scholar 

  22. Rose P, Whiteman M, Huang SH, Halliwell B, Ong CN (2003) beta-Phenylethyl isothiocyanate-mediated apoptosis in hepatoma HepG2 cells. Cell Mol Life Sci 60:1489–1503

    Article  PubMed  CAS  Google Scholar 

  23. Singh AV, Xiao D, Lew KL, Dhir R, Singh SV (2004) Sulforaphane induces caspase-mediated apoptosis in cultured PC-3 human prostate cancer cells and retards growth of PC-3 xenografts in vivo. Carcinogenesis 25:83–90

    Article  PubMed  CAS  Google Scholar 

  24. Singh SV, Srivastava SK, Choi S et al (2005) Sulforaphane-induced cell death in human prostate cancer cells is initiated by reactive oxygen species. J Biol Chem 280:19911–19924

    Article  PubMed  CAS  Google Scholar 

  25. Xu K, Thornalley PJ (2001) Signal transduction activated by the cancer chemopreventive isothiocyanates: cleavage of BID protein, tyrosine phosphorylation and activation of JNK. Br J Cancer 84:670–673

    Article  PubMed  CAS  Google Scholar 

  26. Horakova K, Strakova Z, Jantova S, Muckova M, Floch L (1989) Biological effects of 2-isothiocyanatecarboxylic acid esters: I. Cytotoxic, antimicrobial and genotoxic streening of aminoacid isothiocyanate derivatives. [in Slovak]. Biologia 44:637–646

    CAS  Google Scholar 

  27. Sovcikova A, Mikulasova M, Horakova K, Floch L (2001) Antibacterial and mutagenic activities of new isothiocyanate derivatives. Folia Microbiol (Praha) 46:113–117

    CAS  Google Scholar 

  28. Tulinska J, Sovcikova A, Liskova A, Kubova J, Horakova K (2000) Immunotoxicity of ethyl-4-isothiocyanatobutanoate in male Wistar rats. Toxicology 145:217–225

    Article  PubMed  CAS  Google Scholar 

  29. Horakova K, Jantova S, Stred’ansky M, Novotna L, Floch L (1993) Ethyl 4-isothiocyanatobutanoate-antiproliferative activity in vitro and in vivo. Anticancer Drugs 4:369–375

    Article  PubMed  CAS  Google Scholar 

  30. Bodo J, Chovancova J, Hunakova L, Sedlak J (2005) Enhanced sensitivity of human ovarian carcinoma cell lines A2780 and A2780/CP to the combination of cisplatin and synthetic isothiocyanate ethyl 4-isothiocyanatobutanoate E-4IB. Neoplasma 52:510–516

    PubMed  CAS  Google Scholar 

  31. Leach FS, Nicolaides NC, Papadopoulos N et al (1993) Mutations of a mutS homolog in hereditary nonpolyposis colorectal cancer. Cell 75:1215–1225

    Article  PubMed  CAS  Google Scholar 

  32. Miyaki M, Konishi M, Tanaka K et al (1997) Germline mutation of MSH6 as the cause of hereditary nonpolyposis colorectal cancer. Nat Genet 17:271–272

    PubMed  CAS  Google Scholar 

  33. Papadopoulos N, Nicolaides NC, Wei YF et al (1994) Mutation of a mutL homolog in hereditary colon cancer. Science 263:1625–1629

    PubMed  CAS  Google Scholar 

  34. O’Brien V, Brown R (2005) Signalling cell cycle arrest and cell death through the MMR system. Carcinogenesis 27:682–692

    Article  PubMed  CAS  Google Scholar 

  35. Vernole P, Tedeschi B, Tentori L et al (2006) Role of the mismatch repair system and p53 in the clastogenicity and cytotoxicity induced by bleomycin. Mutat Res 594:63–77

    PubMed  CAS  Google Scholar 

  36. Goldmacher VS, Cuzick RA, Jr., Thilly WG (1986) Isolation and partial characterization of human cell mutants differing in sensitivity to killing and mutation by methylnitrosourea and N-methyl-N′-nitro-N-nitrosoguanidine. J Biol Chem 261:12462–12471

    PubMed  CAS  Google Scholar 

  37. Szadkowski M, Iaccarino I, Heinimann K, Marra G, Jiricny J (2005) Characterization of the mismatch repair defect in the human lymphoblastoid MT1 cells. Cancer Res 65:4525–4529

    Article  PubMed  CAS  Google Scholar 

  38. Floch L, Gogova A, Jakubik T, Pronayova N (1997) Synthesis of ethyl 4-isothiocyanatobutanoate derivates. Chem Papers 51:416–420

    CAS  Google Scholar 

  39. Mosmann T (1983) Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods 65:55–63

    Article  PubMed  CAS  Google Scholar 

  40. Bartkowiak D, Hogner S, Baust H, Nothdurft W, Rottinger EM (1999) Comparative analysis of apoptosis in HL60 detected by annexin-V and fluorescein-diacetate. Cytometry 37:191–196

    Article  PubMed  CAS  Google Scholar 

  41. ISCN (1978) An International System for Human Cytogenetic Nomenclature. Cytogenet Cell Genet 21:309–404

    Google Scholar 

  42. Venitt S, Parry JM (1984) Mutagenicity Testing: A Practical Approach. IRL Press, Oxford, Washington, DC, pp 353

    Google Scholar 

  43. Horakova K, Drobnica L, Nemec P, Antos A, Kristian P (1968) Cytotoxic and cancerostatis activity of isothiocyanates and related compounds. I. Activity of some naturally occurring isothiocyanates and their synthetic analogues on HeLa-cells. Neoplasma 15:169–176

    PubMed  CAS  Google Scholar 

  44. Miyoshi N, Uchida K, Osawa T, Nakamura Y (2004) A link between benzyl isothiocyanate-induced cell cycle arrest and apoptosis: involvement of mitogen-activated protein kinases in the Bcl-2 phosphorylation. Cancer Res 64:2134–2142

    Article  PubMed  CAS  Google Scholar 

  45. Gamet-Payrastre L, Li P, Lumeau S et al (2000) Sulforaphane, a naturally occurring isothiocyanate, induces cell cycle arrest and apoptosis in HT29 human colon cancer cells. Cancer Res 60:1426–1433

    PubMed  CAS  Google Scholar 

  46. Hasegawa T, Nishino H, Iwashima A (1993) Isothiocyanates inhibit cell cycle progression of HeLa cells at G2/M phase. Anticancer Drugs 4:273–279

    PubMed  CAS  Google Scholar 

  47. Singh SV, Herman-Antosiewicz A, Singh AV et al (2004) Sulforaphane-induced G2/M phase cell cycle arrest involves checkpoint kinase 2-mediated phosphorylation of cell division cycle 25C. J Biol Chem 279:25813–25822

    Article  PubMed  CAS  Google Scholar 

  48. Chiao JW, Chung FL, Kancherla R, Ahmed T, Mittelman A, Conaway CC (2002) Sulforaphane and its metabolite mediate growth arrest and apoptosis in human prostate cancer cells. Int J Oncol 20:631–636

    PubMed  CAS  Google Scholar 

  49. Jakubikova J, Sedlak J, Bacon J, Goldson A, Bao Y (2005) Effects of MEK1 and PI3K inhibitors on allyl-, benzyl-and phenylethyl-isothiocyanate-induced G2/M arrest and cell death in Caco-2 cells. Int J Oncol 27:1449–1458

    PubMed  CAS  Google Scholar 

  50. Jakubikova J, Sedlak J, Bod’o J, Bao Y (2006) Effect of isothiocyanates on nuclear accumulation of NF-kappaB, Nrf2, and thioredoxin in caco-2 cells. J Agric Food Chem 54:1656–1662

    Article  PubMed  CAS  Google Scholar 

  51. Kwon SH, Ahn SH, Kim YK et al (2002) Apicidin, a histone deacetylase inhibitor, induces apoptosis and Fas/Fas ligand expression in human acute promyelocytic leukemia cells. J Biol Chem 277:2073–2080

    Article  PubMed  CAS  Google Scholar 

  52. Pappa G, Lichtenberg M, Iori R, Barillari J, Bartsch H, Gerhauser C (2006) Comparison of growth inhibition profiles and mechanisms of apoptosis induction in human colon cancer cell lines by isothiocyanates and indoles from Brassicaceae. Mutat Res Feb 22; [Epub ahead of print]

  53. Xiao D, Singh SV (2002) Phenethyl isothiocyanate-induced apoptosis in p53-deficient PC-3 human prostate cancer cell line is mediated by extracellular signal-regulated kinases. Cancer Res 62:3615–3619

    PubMed  CAS  Google Scholar 

  54. Nakamura Y, Kawakami M, Yoshihiro A et al (2002) Involvement of the mitochondrial death pathway in chemopreventive benzyl isothiocyanate-induced apoptosis. J Biol Chem 277:8492–8499

    Article  PubMed  CAS  Google Scholar 

  55. Ripple MO, Kalmadi S, Eastman A (2005) Inhibition of either phosphatidylinositol 3-kinase/Akt or the mitogen/extracellular-regulated kinase, MEK/ERK, signaling pathways suppress growth of breast cancer cell lines, but MEK/ERK signaling is critical for cell survival. Breast Cancer Res Treat 93:177–188

    Article  PubMed  CAS  Google Scholar 

  56. Parnaud G, Li P, Cassar G et al (2004) Mechanism of sulforaphane-induced cell cycle arrest and apoptosis in human colon cancer cells. NutrCancer 48:198–206

    CAS  Google Scholar 

  57. Xu K, Thornalley PJ (2000) Studies on the mechanism of the inhibition of human leukaemia cell growth by dietary isothiocyanates and their cysteine adducts in vitro. Biochem Pharmacol 60:221–231

    Article  PubMed  CAS  Google Scholar 

  58. Xiao D, Johnson CS, Trump DL, Singh SV (2004) Proteasome-mediated degradation of cell division cycle 25C and cyclin-dependent kinase 1 in phenethyl isothiocyanate-induced G2-M-phase cell cycle arrest in PC-3 human prostate cancer cells. MolCancer Ther 3:567–575

    CAS  Google Scholar 

  59. Brown KD, Rathi A, Kamath R et al (2003) The mismatch repair system is required for S-phase checkpoint activation. Nat Genet 33:80–84

    Article  PubMed  CAS  Google Scholar 

  60. Fishel R (2001) The selection for mismatch repair defects in hereditary nonpolyposis colorectal cancer: revising the mutator hypothesis. Cancer Res 61:7369–7374

    PubMed  CAS  Google Scholar 

  61. Stojic L, Cejka P, Jiricny J (2005) High doses of SN1 type methylating agents activate DNA damage signaling cascades that are largely independent of mismatch repair. Cell Cycle 4:473–477

    PubMed  CAS  Google Scholar 

  62. Kassie F, Knasmuller S (2000) Genotoxic effects of allyl isothiocyanate (AITC) and phenethyl isothiocyanate (PEITC). Chem Biol Interact 127:163–180

    Article  PubMed  CAS  Google Scholar 

  63. Fimognari C, Berti F, Cantelli-Forti G, Hrelia P (2005) Effect of sulforaphane on micronucleus inductionin cultured human lymphocytes by four different mutagens. Environ Mol Mutagen 46:260–267

    Article  PubMed  CAS  Google Scholar 

  64. Fimognari C, Berti F, Iori R, Cantelli-Forti G, Hrelia P (2005) Micronucleus formation and induction of apoptosis by different isothiocyanates and a mixture of isothiocyanates in human lymphocyte cultures. Mutat Res 582:1–10

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jan Sedlak.

Additional information

This work was supported in part by Slovak Governmental Research and Development sub-program Food-quality and safety No. 2003SP270280E010280E01, National Program “Use of Cancer Genomics to Improve the Human Population Health”, project 2003 SP 510280800/0280801, European Commission project (QLG1-CT-2000-01230), and VEGA projects 2/4069 and 2/3161/23.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bodo, J., Jakubikova, J., Chalupa, I. et al. Apoptotic effect of ethyl-4-isothiocyanatobutanoate is associated with DNA damage, proteasomal activity and induction of p53 and p21cip1/waf1 . Apoptosis 11, 1299–1310 (2006). https://doi.org/10.1007/s10495-006-8760-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10495-006-8760-5

Keywords

Navigation