Skip to main content
Log in

Clostridium difficile toxin A-induced apoptosis is p53-independent but depends on glucosylation of Rho GTPases

  • Original Paper
  • Published:
Apoptosis Aims and scope Submit manuscript

Abstract

Clostridium difficile toxin A (TcdA) is one of two homologous glucosyltransferases that mono-glucosylate Rho GTPases. HT29 cells were challenged with wild-type and mutant TcdA to investigate the mechanism by which apoptosis is induced. The TcdA-induced re-organization of the actin cytoskeleton led to an increased number of cells within the G2/M phase. Depolymerization of the actin filaments with subsequent G2/M arrest, however, was not causative for apoptosis, as shown in a comparative study using latrunculin B. The activation of caspase-3, -8, and -9 strictly depended on the glucosylation of Rho GTPases. Apoptosis measured by flow cytometry was completely abolished by a pan-caspase inhibitor (z-VAD-fmk). Interestingly, cleavage of procaspase-3 and Bid was not inhibited by z-VAD-fmk, but was inhibited by the calpain/cathepsin inhibitor ALLM. Cleavage of procaspase-8 was susceptible to inhibition by z-VAD-fmk and to the caspase-3 inhibitor Ac-DMQD-CHO, indicating a contribution to the activation of caspase-3 in an amplifying manner. Although TcdA induced mitochondrial damage and cytochrome c release, p53 was not activated or up-regulated. A p53-independent apoptotic effect was also checked by treatment of HCT 116 p53−/− cells. In summary, TcdA-induced apoptosis in HT29 cells depends on glucosylation of Rho GTPases leading to activation of cathepsins and caspase-3.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

TcdA/TcdB:

C. difficile toxin A/toxin B

CPE:

Cytopathic effect

CTE:

Cytotoxic effect

FACS:

Fluorescence-associated cell sorting

GAPDH:

Glyceraldehyde-3-phosphate dehydrogenase

GT:

Glucosyltransferase

z-VAD-fmk:

Benzyloxycarbonyl-Phe-Val-Ala-Asp-(Ome)-fluoromethyl-ketone

Ac-DMQD-CHO:

Acetyl-Asp-Met-Gln-Asp-CHO

ALLM:

N-Acetyl-Leu-Leu-Met

References

  1. Just I, Gerhard R (2004) Large clostridial cytotoxins. Rev Physiol Biochem Pharmacol 152:23–47

    Article  PubMed  CAS  Google Scholar 

  2. Just I, Selzer J, Wilm M, Von Eichel-Streiber C, Mann M, Aktories K (1995) Glucosylation of Rho proteins by Clostridium difficile toxin B. Nature 375:500–503

    Article  PubMed  CAS  Google Scholar 

  3. Hall A (1998) Rho GTPases and the actin cytoskeleton. Science 279:509–514

    Article  PubMed  CAS  Google Scholar 

  4. Jaffe AB, Hall A (2005) Rho GTPases: biochemistry and biology. Annu Rev Cell Dev Biol 21:247–269

    Article  PubMed  CAS  Google Scholar 

  5. Ridley AJ (2001) Rho proteins: linking signaling with membrane trafficking. Traffic 2:303–310

    Article  PubMed  CAS  Google Scholar 

  6. Aznar S, Lacal JC (2001) Rho signals to cell growth and apoptosis. Cancer Lett 165:1–10

    Article  PubMed  CAS  Google Scholar 

  7. Symons M (1996) Rho family GTPases: the cytoskeleton and beyond. Trends Biochem Sci 121:178–181

    Article  Google Scholar 

  8. Coleman ML, Olson MF (2002) Rho GTPase signalling pathways in the morphological changes associated with apoptosis. Cell Death Diff 9:493–504

    Article  CAS  Google Scholar 

  9. Coniglio SJ, Jou TS, Symons M (2001) Rac1 protects epithelial cells against anoikis. J Biol Chem 276:28113–28120

    Article  PubMed  CAS  Google Scholar 

  10. Fritz G, Kaina B (2006) Rho GTPases: promising cellular targets for novel anticancer drugs. Curr Cancer Drug Targets 6:1–14

    Article  PubMed  CAS  Google Scholar 

  11. Fiorentini C, Falzano L, Travaglione S, Fabbri A (2003) Hijacking Rho GTPases by protien toxins and apoptosis: molecular stratagies of pahtogenic bacteria. Cell Death Diff 10:147–152

    Article  CAS  Google Scholar 

  12. Brito GA, Carneiro-Filho B, Oria RB, Destura RV, Lima AA, Guerrant RL (2005) Clostridium difficile toxin A induces intestinal epithelial cell apoptosis and damage: role of Gln and Ala-Gln in toxin A effects. Dig Dis Sci 50:1271–1278

    Article  PubMed  CAS  Google Scholar 

  13. Carneiro BA, Fujii J, Brito GA et al (2006) Caspase and bid involvement in Clostridium difficile toxin A-induced apoptosis and modulation of toxin A effects by glutamine and alanyl-glutamine in vivo and in vitro. Infect Immun 74:81–87

    Article  PubMed  CAS  Google Scholar 

  14. Brito GA, Fujji J, Carneiro-Filho BA, Lima AA, Obrig T, Guerrant RL (2002) Mechanism of Clostridium difficile toxin A-induced apoptosis in T84 cells. J Infect Dis 186:1438–1447

    Article  PubMed  CAS  Google Scholar 

  15. Liu TS, Musch MW, Sugi K et al (2003) Protective role of HSP72 against Clostridium difficile toxin A-induced intestinal epithelial cell dysfunction. Am J Physiol 284:C1073–C1082

    CAS  Google Scholar 

  16. Brito GAC, Fujji J, Carneiro BA, Lima AAM, Obrig T, Guerrant RL (2002) Mechanism of Clostridum difficile toxin A-induced apoptosis in T84 cells. J Infect Dis 186:1438–1447

    Article  PubMed  CAS  Google Scholar 

  17. Mahida YR, Galvin A, Makh S et al (1998) Effect of Clostridium difficile toxin A on human colonic lamina propria cells: early loss of macrophages followed by T-cell apoptosis. Infect Immun 66:5462–5469

    PubMed  CAS  Google Scholar 

  18. Fiorentini C, Fabbri A, Falzano L et al (1998) Clostridium difficile toxin B induces apoptosis in intestinal cultured cells. Infect Immun 66:2660–2665

    PubMed  CAS  Google Scholar 

  19. Le SS, Loucks FA, Udo H et al (2005) Inhibition of Rac GTPase triggers a c-Jun and Bim-dependent mitochondrial apoptotic cascade in cerebellar granule neurons. J Neurochem 94:1025–1039

    Article  PubMed  CAS  Google Scholar 

  20. Hippenstiel S, Schmeck B, N’Guessan PD et al (2002) Rho protein inactivation induced apoptosis of cultured human endothelial cells. Am J Physiol 283:L830–L838

    CAS  Google Scholar 

  21. Qa’Dan M, Ramsey M, Daniel J et al (2002) Clostridium difficile toxin B activates dual caspase-dependent and caspase-independent apoptosis in intoxicated cells. Cell Microbiol 4:425–434

    Article  PubMed  CAS  Google Scholar 

  22. Warny M, Kelly CP (1999) Monocytic cell necrosis is mediated by potassium depletion and caspase-like proteases. Am J Physiol 276:C717–C724

    PubMed  CAS  Google Scholar 

  23. Solomon K, Webb J, Ali N, Robins RA, Mahida YR (2005) Monocytes are highly sensitive to clostridium difficile toxin A-induced apoptotic and nonapoptotic cell death. Infect Immun 73:1625–1634

    Article  PubMed  CAS  Google Scholar 

  24. Boatright KM, Salvesen GS (2003) Mechanisms of caspase activation. Curr Opin Cell Biol 15:725–731

    Article  PubMed  CAS  Google Scholar 

  25. Kim H, Kokkotou E, Na X et al (2005) Clostridium difficile toxin A-induced colonocyte apoptosis involves p53-dependent p21(WAF1/CIP1) induction via p38 mitogen-activated protein kinase. Gastroenterology 129:1875–1888

    Article  PubMed  CAS  Google Scholar 

  26. Gerhard R, Burger S, Tatge H, Genth H, Just I, Hofmann F (2005) Comparison of wild type with recombinant Clostridium difficile toxin A. Microb Pathog 38:77–83

    Article  PubMed  CAS  Google Scholar 

  27. Teichert M, Tatge H, Schoentaube J, Just I, Gerhard R (2006) Application of mutated Clostridium difficile toxin A for determination of glucosyltransferase-dependent effects. Infect Immun 74:6006–6010

    Article  PubMed  CAS  Google Scholar 

  28. Burger S, Tatge H, Hofmann F, Just I, Gerhard R (2003) Expression of recombinant Clostridium difficile toxin A using the Bacillus megaterium system. Biochem Biophys Res Commun 307:584–588

    Article  PubMed  CAS  Google Scholar 

  29. Genth H, Huelsenbeck J, Hartmann B, Hofmann F, Just I, Gerhard R (2006) Cellular stability of Rho-GTPases glucosylated by Clostridium difficile toxin B. FEBS Lett 580:3565–3569

    Article  PubMed  CAS  Google Scholar 

  30. O’Connor PM, Jackman J, Bae I et al (1997) Characterization of the p53 tumor suppressor pathway in cell lines of the National Cancer Institute anticancer drug screen and correlations with the growth-inhibitory potency of 123 anticancer agents. Cancer Res 57:4285–4300

    PubMed  CAS  Google Scholar 

  31. Bunz F, Hwang PM, Torrance C et al (1999) Disruption of p53 in human cancer cells alters the responses to therapeutic agents. J Clin Invest 104:263–269

    Article  PubMed  CAS  Google Scholar 

  32. Brenner B, Koppenhoefer U, Weinstock C, Linderkamp O, Lang F, Gulbins E (1997) Fas- or ceramide-induced apoptosis is mediated by a Rac1-regulated activation of Jun N-terminal kinase/p38 kinases and GADD153. J Biol Chem 272:22173–22181

    Article  PubMed  CAS  Google Scholar 

  33. Esteve P, Embade N, Perona R et al (1998) Rho-regulated signals induce apoptosis in vitro and in vivo by a p53-independent, but Bcl2 dependent pathway. Oncogene 17:1855–1869

    Article  PubMed  CAS  Google Scholar 

  34. Rattan R, Giri S, Singh AK, Singh I (2006) Rho/ROCK pathway as a target of tumor therapy. J Neurosci Res 83:243–255

    Article  PubMed  CAS  Google Scholar 

  35. Bobak D, Moorman J, Guanzon A, Gilmer L, Hahn C (1997) Inactivation of the small GTPase Rho disrupts cellular attachment and induces adhesion-dependent and adhesion-independent apoptosis. Oncogene 15:2179–2189

    Article  PubMed  CAS  Google Scholar 

  36. Li X, Liu L, Tupper JC et al (2002) Inhibition of protein geranylgeranylation and RhoA/RhoA kinase pathway induces apoptosis in human endothelial cells. J Biol Chem 277:15309–15316

    Article  PubMed  CAS  Google Scholar 

  37. Ikeda H, Nagashima K, Yanase M et al (2003) Involvement of Rho/Rho kinase pathway in regulation of apoptosis in rat hepatic stellate cells. Am J Physiol 285:G880–G886

    CAS  Google Scholar 

  38. Lassus P, Roux P, Zugasti O, Philips A, Fort P, Hibner U (2000) Extinction of rac1 and Cdc42Hs signalling defines a novel p53-dependent apoptotic pathway. Oncogene 19:2377–2385

    Article  PubMed  CAS  Google Scholar 

  39. Petit P, Bréard J, Montalescot V et al (2003) Lethal toxin from Clostridium sordellii induces apoptotic cell death by disruption of mitochondrial homeostasis in HL-60 cells. Cell Microbiol 2:761–771

    Article  CAS  Google Scholar 

  40. Linseman DA, Laessig T, Meintzer MK et al (2001) An essential role for Rac/Cdc42 GTPases in cerebellar granule neuron survival. J Biol Chem 276:39123–39131

    Article  PubMed  CAS  Google Scholar 

  41. Hippenstiel S, Schmeck B, Seybold J, Krull M, Eichel-Streiber C, Suttorp N (2002) Reduction of tumor necrosis factor-alpha (TNF-alpha) related nuclear factor-kappaB (NF-kappaB) translocation but not inhibitor kappa-B (Ikappa-B)-degradation by Rho protein inhibition in human endothelial cells. Biochem Pharmacol 64:971–977

    Article  PubMed  CAS  Google Scholar 

  42. Yang S, Thor AD, Edgerton S, Yang X (2006) Caspase-3 mediated feedback activation of apical caspases in doxorubicin and TNF-alpha induced apoptosis. Apoptosis 11:1987–1997

    Article  PubMed  CAS  Google Scholar 

  43. Yin XM (2006) Bid, a BH3-only multi-functional molecule, is at the cross road of life and death. Gene 369:7–19

    Article  PubMed  CAS  Google Scholar 

  44. Chi S, Chang S, Park D (2004) Pak regulates calpain-dependent degradation of E3b1. Biochem Biophys Res Commun 319:683–689

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We are grateful to Helma Tatge for excellent technical assistance, and we also thank Hanping Feng, Tufts University, for critical reading of the manuscript. This study was supported by Deutsche Forschungsgemeinschaft SFB621 (Project B5) and SPP1150 (Project GE 1247/1-2). HCT 116 p53−/− and wild-type cells were kindly provided by Bert Vogelstein, Baltimore, USA.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ralf Gerhard.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nottrott, S., Schoentaube, J., Genth, H. et al. Clostridium difficile toxin A-induced apoptosis is p53-independent but depends on glucosylation of Rho GTPases. Apoptosis 12, 1443–1453 (2007). https://doi.org/10.1007/s10495-007-0074-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10495-007-0074-8

Keywords

Navigation