Skip to main content
Log in

Targeting erythroblast-specific apoptosis in experimental anemia

  • Original Paper
  • Published:
Apoptosis Aims and scope Submit manuscript

Abstract

Erythrocyte production is regulated by balancing precursor cell apoptosis and survival signaling. Previously, we found that BH3-only proapoptotic factor, Nix, opposed erythroblast-survival signaling by erythropoietin-induced Bcl-xl during normal erythrocyte formation. Since erythropoietin treatment of human anemia has limitations, we explored the therapeutic potential of abrogating Nix-mediated erythroblast apoptosis to enhance erythrocyte production. Nix gene ablation blunted the phenylhydrazine-induced fall in blood count, enhanced hematocrit recovery, and reduced erythroblast apoptosis, despite lower endogenous erythropoietin levels. Similar to erythropoietin, Nix ablation increased early splenic erythroblasts and circulating reticulocytes, while maintaining a pool of mature erythroblasts as erythropoietic reserve. Erythrocytes in Nix-deficient mice showed morphological abnormalities, suggesting that apoptosis during erythropoiesis not only controls red blood cell number, but also serves a “triage” function, preferentially eliminating abnormal erythrocytes. These results support the concept of targeting erythroblast apoptosis to maximize erythrocyte production in acute anemia, which may be of value in erythropoietin resistance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Wu H, Liu X, Jaenisch R, Lodish HF (1995) Generation of committed erythroid BFU-E and CFU-E progenitors does not require erythropoietin or the erythropoietin receptor. Cell 83:59–67. doi:10.1016/0092-8674(95)90234-1

    Article  PubMed  CAS  Google Scholar 

  2. Italian Cooperative Study Group for rHuEpo in Myelodysplastic Syndromes (1998) A randomized double-blind placebo-controlled study with subcutaneous recombinant human erythropoietin in patients with low-risk myelodysplastic syndromes. Br J Haematol 103:1070–1074. doi:10.1046/j.1365-2141.1998.01085.x

    Article  Google Scholar 

  3. Blumenauer B, Cranney A, Clinch J, Tugwell P (2003) Quality of life in patients with rheumatoid arthritis: which drugs might make a difference? Pharmacoeconomics 21:927–940. doi:10.2165/00019053-200321130-00002

    Article  PubMed  Google Scholar 

  4. Littlewood TJ, Cella D, Nortier JW (2002) Erythropoietin improves quality of life. Lancet Oncol 3:459–460. doi:10.1016/S1470-2045(02)00827-6

    Article  PubMed  Google Scholar 

  5. Eschbach JW, Egrie JC, Downing MR, Browne JK, Adamson JW (1987) Correction of the anemia of end-stage renal disease with recombinant human erythropoietin. Results of a combined phase I and II clinical trial. N Engl J Med 316:73–78

    PubMed  CAS  Google Scholar 

  6. Corwin HL, Gettinger A, Fabian TC et al (2007) Efficacy and safety of epoetin alfa in critically ill patients. N Engl J Med 357:965–976. doi:10.1056/NEJMoa071533

    Article  PubMed  CAS  Google Scholar 

  7. Steinbrook R (2007) Erythropoietin, the FDA, and oncology. N Engl J Med 356:2448–2451. doi:10.1056/NEJMp078100

    Article  PubMed  CAS  Google Scholar 

  8. Macdougall IC (2007) Epoetin-induced pure red cell aplasia: diagnosis and treatment. Curr Opin Nephrol Hypertens 16:585–588. doi:10.1097/MNH.0b013e3282f0c4bf

    Article  PubMed  CAS  Google Scholar 

  9. Fishbane S, Besarab A (2007) Mechanism of increased mortality risk with erythropoietin treatment to higher hemoglobin targets. Clin J Am Soc Nephrol 2:1274–1282. doi:10.2215/CJN.02380607

    Article  PubMed  CAS  Google Scholar 

  10. Phrommintikul A, Haas SJ, Elsik M, Krum H (2007) Mortality and target haemoglobin concentrations in anaemic patients with chronic kidney disease treated with erythropoietin: a meta-analysis. Lancet 369:381–388. doi:10.1016/S0140-6736(07)60194-9

    Article  PubMed  CAS  Google Scholar 

  11. Lacombe C (1996) Resistance to erythropoietin. N Engl J Med 334:660–662. doi:10.1056/NEJM199603073341012

    Article  PubMed  CAS  Google Scholar 

  12. Van Dyke, Layrisse M, Lawrence JH, Garcia JF, Pollycove M (1961) Relation between severity of anemia and erythropoietin titer in human beings. Blood 18:187–201

  13. Koury MJ, Bondurant MC (1990) Erythropoietin retards DNA breakdown and prevents programmed death in erythroid progenitor cells. Science 248:378–381. doi:10.1126/science.2326648

    Article  PubMed  CAS  Google Scholar 

  14. Socolovsky M, Fallon AE, Wang S, Brugnara C, Lodish HF (1999) Fetal anemia and apoptosis of red cell progenitors in Stat5a-/-5b-/- mice: a direct role for Stat5 in Bcl-X(L) induction. Cell 98:181–191. doi:10.1016/S0092-8674(00)81013-2

    Article  PubMed  CAS  Google Scholar 

  15. Motoyama N, Wang F, Roth KA et al (1995) Massive cell death of immature hematopoietic cells and neurons in Bcl-x-deficient mice. Science 267:1506–1510. doi:10.1126/science.7878471

    Article  PubMed  CAS  Google Scholar 

  16. Kieran MW, Perkins AC, Orkin SH, Zon LI (1996) Thrombopoietin rescues in vitro erythroid colony formation from mouse embryos lacking the erythropoietin receptor. Proc Natl Acad Sci USA 93:9126–9131. doi:10.1073/pnas.93.17.9126

    Article  PubMed  CAS  Google Scholar 

  17. Lindsten T, Ross AJ, King A et al (2000) The combined functions of proapoptotic Bcl-2 family members bak and bax are essential for normal development of multiple tissues. Mol Cell 6:1389–1399. doi:10.1016/S1097-2765(00)00136-2

    Article  PubMed  CAS  Google Scholar 

  18. Wei MC, Zong WX, Cheng EH et al (2001) Proapoptotic BAX and BAK: a requisite gateway to mitochondrial dysfunction and death. Science 292:727–730. doi:10.1126/science.1059108

    Article  PubMed  CAS  Google Scholar 

  19. Diwan A, Koesters AG, Odley AM et al (2007) Unrestrained erythroblast development in Nix-/- mice reveals a mechanism for apoptotic modulation of erythropoiesis. Proc Natl Acad Sci USA 104:6794–6799. doi:10.1073/pnas.0610666104

    Article  PubMed  CAS  Google Scholar 

  20. Socolovsky M, Nam H, Fleming MD, Haase VH, Brugnara C, Lodish HF (2001) Ineffective erythropoiesis in Stat5a(-/-)5b(-/-) mice due to decreased survival of early erythroblasts. Blood 98:3261–3273. doi:10.1182/blood.V98.12.3261

    Article  PubMed  CAS  Google Scholar 

  21. Vannucchi AM, Bianchi L, Cellai C et al (2001) Accentuated response to phenylhydrazine and erythropoietin in mice genetically impaired for their GATA-1 expression (GATA-1(low) mice). Blood 97:3040–3050. doi:10.1182/blood.V97.10.3040

    Article  PubMed  CAS  Google Scholar 

  22. Giarratana MC, Kobari L, Lapillonne H et al (2005) Ex vivo generation of fully mature human red blood cells from hematopoietic stem cells. Nat Biotechnol 23:69–74. doi:10.1038/nbt1047

    Article  PubMed  CAS  Google Scholar 

  23. Ballas SK, Clark MR, Mohandas N et al (1984) Red cell membrane and cation deficiency in Rh null syndrome. Blood 63:1046–1055

    PubMed  CAS  Google Scholar 

  24. Kalfa TA, Pushkaran S, Mohandas N et al (2006) Rac GTPases regulate the morphology and deformability of the erythrocyte cytoskeleton. Blood 108:3637–3645. doi:10.1182/blood-2006-03-005942

    Article  PubMed  CAS  Google Scholar 

  25. Bauer A, Tronche F, Wessely O et al (1999) The glucocorticoid receptor is required for stress erythropoiesis. Genes Dev 13:2996–3002. doi:10.1101/gad.13.22.2996

    Article  PubMed  CAS  Google Scholar 

  26. Chan JY, Kwong M, Lo M, Emerson R, Kuypers FA (2001) Reduced oxidative-stress response in red blood cells from p45NFE2-deficient mice. Blood 97:2151–2158. doi:10.1182/blood.V97.7.2151

    Article  PubMed  CAS  Google Scholar 

  27. Peschle C, Magli MC, Cillo C et al (1977) Kinetics of erythroid and myeloid stem cells in post-hypoxia polycythaemia. Br J Haematol 37:345–352. doi:10.1111/j.1365-2141.1977.tb01005.x

    Article  PubMed  CAS  Google Scholar 

  28. Ou LC, Kim D, Layton WM Jr, Smith RP (1980) Splenic erythropoiesis in polycythemic response of the rat to high-altitude exposure. J Appl Physiol 48:857–861

    PubMed  CAS  Google Scholar 

  29. Schweers RL, Zhang J, Randall MS et al (2007) NIX is required for programmed mitochondrial clearance during reticulocyte maturation. Proc Natl Acad Sci USA 104:19500–19505. doi:10.1073/pnas.0708818104

    Article  PubMed  CAS  Google Scholar 

  30. Sandoval H, Thiagarajan P, Dasgupta SK et al (2008) Essential role for Nix in autophagic maturation of erythroid cells. Nature. doi:10.1038/nature07006

  31. Walsh M, Lutz RJ, Cotter TG, O’Connor R (2002) Erythrocyte survival is promoted by plasma and suppressed by a Bak-derived BH3 peptide that interacts with membrane-associated Bcl-X(L). Blood 99:3439–3448. doi:10.1182/blood.V99.9.3439

    Article  PubMed  CAS  Google Scholar 

  32. Brodsky I, Dennis LH, Kahn SB (1966) Erythropoiesis in Friend leukemia: red blood cell survival and ferrokinetics. Cancer Res 26:1887–1892

    PubMed  CAS  Google Scholar 

  33. Weiss MJ, Orkin SH (1995) Transcription factor GATA-1 permits survival and maturation of erythroid precursors by preventing apoptosis. Proc Natl Acad Sci USA 92:9623–9627. doi:10.1073/pnas.92.21.9623

    Article  PubMed  CAS  Google Scholar 

  34. Silva M, Grillot D, Benito A, Richard C, Nunez G, Fernandez-Luna JL (1996) Erythropoietin can promote erythroid progenitor survival by repressing apoptosis through Bcl-XL and Bcl-2. Blood 88:1576–1582

    PubMed  CAS  Google Scholar 

  35. Gregory T, Yu C, Ma A, Orkin SH, Blobel GA, Weiss MJ (1999) GATA-1 and erythropoietin cooperate to promote erythroid cell survival by regulating bcl-xL expression. Blood 94:87–96

    PubMed  CAS  Google Scholar 

  36. Chen G, Cizeau J, Vande VC et al (1999) Nix and Nip3 form a subfamily of pro-apoptotic mitochondrial proteins. J Biol Chem 274:7–10. doi:10.1074/jbc.274.1.7

    Article  PubMed  CAS  Google Scholar 

  37. Aerbajinai W, Giattina M, Lee YT, Raffeld M, Miller JL (2003) The proapoptotic factor Nix is coexpressed with Bcl-xL during terminal erythroid differentiation. Blood 102:712–717. doi:10.1182/blood-2002-11-3324

    Article  PubMed  CAS  Google Scholar 

  38. Kelley LL, Koury MJ, Bondurant MC, Koury ST, Sawyer ST, Wickrema A (1993) Survival or death of individual proerythroblasts results from differing erythropoietin sensitivities: a mechanism for controlled rates of erythrocyte production. Blood 82:2340–2352

    PubMed  CAS  Google Scholar 

  39. Karur VG, Lowell CA, Besmer P, Agosti V, Wojchowski DM (2006) Lyn kinase promotes erythroblast expansion and late-stage development. Blood 108:1524–1532. doi:10.1182/blood-2005-09-008243

    Article  PubMed  CAS  Google Scholar 

  40. Menon MP, Karur V, Bogacheva O, Bogachev O, Cuetara B, Wojchowski DM (2006) Signals for stress erythropoiesis are integrated via an erythropoietin receptor-phosphotyrosine-343-Stat5 axis. J Clin Invest 116:683–694. doi:10.1172/JCI25227

    Article  PubMed  Google Scholar 

  41. Ferrali M, Signorini C, Ciccoli L, Comporti M (1992) Iron release and membrane damage in erythrocytes exposed to oxidizing agents, phenylhydrazine, divicine and isouramil. Biochem J 285(Pt 1):295–301

    PubMed  CAS  Google Scholar 

  42. Bogdanova A, Mihov D, Lutz H, Saam B, Gassmann M, Vogel J (2007) Enhanced erythro-phagocytosis in polycythemic mice overexpressing erythropoietin. Blood 110:762–769. doi:10.1182/blood-2006-12-063602

    Article  PubMed  CAS  Google Scholar 

  43. Stohlman F Jr (1961) Humoral regulation of erythropoiesis. VII. Shortened survival of erythrocytes produced by erythropoietine or severe anemia. Proc Soc Exp Biol Med 107:884–887

    PubMed  CAS  Google Scholar 

  44. Anderson C, Aronson I, Jacobs P (2000) Erythropoiesis: erythrocyte deformability is reduced and fragility increased by iron deficiency. Hematology. 4:457–460

    PubMed  CAS  Google Scholar 

  45. Barosi G, Cazzola M, Frassoni F, Orlandi E, Stefanelli M (1981) Erythropoiesis in myelofibrosis with myeloid metaplasia: recognition of different classes of patients by erythrokinetics. Br J Haematol 48:263–272

    PubMed  CAS  Google Scholar 

  46. Berlin NI, Lawrence JH, Lee HC (1951) The life span of the red blood cell in chronic leukemia and polycythemia. Science 114:385–387. doi:10.1126/science.114.2963.385

    Article  PubMed  CAS  Google Scholar 

  47. Huff RL, Hennessy TG, Austin RE, Garcia JF, Roberts BM, Lawrence JH (1950) Plasma and red cell iron turnover in normal subjects and in patients having various hematopoietic disorders. J Clin Invest 29:1041–1052. doi:10.1172/JCI102335

    Article  PubMed  CAS  Google Scholar 

  48. Syed F, Odley A, Hahn HS et al (2004) Physiological growth synergizes with pathological genes in experimental cardiomyopathy. Circ Res 95:1200–1206. doi:10.1161/01.RES.0000150366.08972.7f

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

Supported by NHLBI HL59888, HL77101 (to G.W.D.), the American Heart Association (Scientist Development Grant to A.D.), and the U.S. Department of Veterans Affairs. The authors declare no competing financial interests. Author contributions: A.D. designed and performed research, analyzed data and wrote paper, A.G.K. performed research and analyzed data, D.C. performed research and analyzed data, H.G. performed research and analyzed data, T.A.K. performed research and analyzed data; and G.W.D. designed and performed research, analyzed data and wrote paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gerald W. Dorn II.

Additional information

Abhinav Diwan and Andrew G. Koesters contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Diwan, A., Koesters, A.G., Capella, D. et al. Targeting erythroblast-specific apoptosis in experimental anemia. Apoptosis 13, 1022–1030 (2008). https://doi.org/10.1007/s10495-008-0236-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10495-008-0236-3

Keywords

Navigation