Skip to main content
Log in

Cracking open cell death in the Drosophila ovary

  • Apoptosis in Drosophila
  • Published:
Apoptosis Aims and scope Submit manuscript

Abstract

The Drosophila melanogaster ovary is a powerful yet simple system with only a few cell types. Cell death in the ovary can be induced in response to multiple developmental and environmental signals. These cell deaths occur at distinct stages of oogenesis and involve unique mechanisms utilizing apoptotic, autophagic and perhaps necrotic processes. In this review, we summarize recent progress characterizing cell death mechanisms in the fly ovary.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Kroemer G, Galluzzi L, Vandenabeele P et al (2009) Classification of cell death: recommendations of the Nomenclature Committee on cell death 2009. Cell Death Differ 16:3–11

    Article  PubMed  CAS  Google Scholar 

  2. Kretzschmar D (2005) Neurodegenerative mutants in Drosophila: a means to identify genes and mechanisms involved in human diseases? Invert Neurosci 5:97–109

    Article  PubMed  CAS  Google Scholar 

  3. van der Plas MC, Pilgram GS, de Jong AW, Bansraj MR, Fradkin LG, Noordermeer JN (2007) Drosophila Dystrophin is required for integrity of the musculature. Mech Dev 124:617–630

    Article  PubMed  CAS  Google Scholar 

  4. Hay BA, Guo M (2006) Caspase-dependent cell death in Drosophila. Annu Rev Cell Dev Biol 22:623–650

    Article  PubMed  CAS  Google Scholar 

  5. Steller H (2008) Regulation of apoptosis in Drosophila. Cell Death Differ 15:1132–1138

    Article  PubMed  CAS  Google Scholar 

  6. Yu SY, Yoo SJ, Yang L et al (2002) A pathway of signals regulating effector and initiator caspases in the developing Drosophila eye. Development 129:3269–3278

    PubMed  CAS  Google Scholar 

  7. Muro I, Berry DL, Huh JR et al (2006) The Drosophila caspase ice is important for many apoptotic cell deaths and for spermatid individualization, a nonapoptotic process. Development 133:3305–3315

    Article  PubMed  CAS  Google Scholar 

  8. Yin VP, Thummel CS (2004) A balance between the diap1 death inhibitor and reaper and hid death inducers controls steroid-triggered cell death in Drosophila. Proc Natl Acad Sci U S A 101:8022–8027

    Article  PubMed  CAS  Google Scholar 

  9. Martin DN, Baehrecke EH (2004) Caspases function in autophagic programmed cell death in Drosophila. Development 131:275–284

    Article  PubMed  CAS  Google Scholar 

  10. Berry DL, Baehrecke EH (2007) Growth arrest and autophagy are required for salivary gland cell degradation in Drosophila. Cell 131:1137–1148

    Article  PubMed  CAS  Google Scholar 

  11. Golstein P, Kroemer G (2007) Cell death by necrosis: towards a molecular definition. Trends Biochem Sci 32:37–43

    Article  PubMed  CAS  Google Scholar 

  12. Wu X, Tanwar PS, Raftery LA (2008) Drosophila follicle cells: morphogenesis in an eggshell. Semin Cell Dev Biol 19:271–282

    Article  PubMed  CAS  Google Scholar 

  13. Spradling AC (1993) Developmental genetics of oogenesis. In: Bate M, Martinez Arias A (eds) The development of Drosophila melanogaster. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, pp 1–70

    Google Scholar 

  14. King RC (1970) Ovarian development in Drosophila melanogaster. Academic Press, New York

    Google Scholar 

  15. Coffman CR (2003) Cell migration and programmed cell death of Drosophila germ cells. Ann NY Acad Sci 995:117–126

    Article  PubMed  CAS  Google Scholar 

  16. Sano H, Renault AD, Lehmann R (2005) Control of lateral migration and germ cell elimination by the Drosophila melanogaster lipid phosphate phosphatases Wunen and Wunen 2. J Cell Biol 171:675–683

    Article  PubMed  CAS  Google Scholar 

  17. Yamada Y, Davis KD, Coffman CR (2008) Programmed cell death of primordial germ cells in Drosophila is regulated by p53 and the outsiders monocarboxylate transporter. Development 135:207–216

    Article  PubMed  CAS  Google Scholar 

  18. McCall K (2004) Eggs over easy: cell death in the Drosophila ovary. Dev Biol 274:3–14

    Article  PubMed  CAS  Google Scholar 

  19. Drummond-Barbosa D, Spradling AC (2001) Stem cells and their progeny respond to nutritional changes during Drosophila oogenesis. Dev Biol 231:265–278

    Article  PubMed  CAS  Google Scholar 

  20. Wu Q, Brown MR (2006) Signaling and function of insulin-like peptides in insects. Annu Rev Entomol 51:1–24

    Article  PubMed  CAS  Google Scholar 

  21. Montagne J, Stewart MJ, Stocker H, Hafen E, Kozma SC, Thomas G (1999) Drosophila S6 kinase: a regulator of cell size. Science 285:2126–2129

    Article  PubMed  CAS  Google Scholar 

  22. Brogiolo W, Stocker H, Ikeya T, Rintelen F, Fernandez R, Hafen E (2001) An evolutionarily conserved function of the Drosophila insulin receptor and insulin-like peptides in growth control. Curr Biol 11:213–221

    Article  PubMed  CAS  Google Scholar 

  23. Bohni R, Riesgo-Escovar J, Oldham S et al (1999) Autonomous control of cell and organ size by CHICO, a Drosophila homolog of vertebrate IRS1–4. Cell 97:865–875

    Article  PubMed  CAS  Google Scholar 

  24. Scanga SE, Ruel L, Binari RC et al (2000) The conserved PI3’K/PTEN/Akt signaling pathway regulates both cell size and survival in Drosophila. Oncogene 19:3971–3977

    Article  PubMed  CAS  Google Scholar 

  25. Cho KS, Lee JH, Kim S et al (2001) Drosophila phosphoinositide-dependent kinase-1 regulates apoptosis and growth via the phosphoinositide 3-kinase-dependent signaling pathway. Proc Natl Acad Sci USA 98:6144–6149

    Article  PubMed  CAS  Google Scholar 

  26. LaFever L, Drummond-Barbosa D (2005) Direct control of germline stem cell division and cyst growth by neural insulin in Drosophila. Science 309:1071–1073

    Article  PubMed  CAS  Google Scholar 

  27. Zhang H, Stallock JP, Ng JC, Reinhard C, Neufeld TP (2000) Regulation of cellular growth by the Drosophila target of rapamycin dTOR. Genes Dev 14:2712–2724

    Article  PubMed  CAS  Google Scholar 

  28. Zhang Y, Billington CJ Jr, Pan D, Neufeld TP (2006) Drosophila target of rapamycin kinase functions as a multimer. Genetics 172:355–362

    Article  PubMed  CAS  Google Scholar 

  29. Melendez A, Neufeld TP (2008) The cell biology of autophagy in metazoans: a developing story. Development 135:2347–2360

    Article  PubMed  CAS  Google Scholar 

  30. Hou YC, Chittaranjan S, Barbosa SG, McCall K, Gorski SM (2008) Effector caspase Dcp-1 and IAP protein Bruce regulate starvation-induced autophagy during Drosophila melanogaster oogenesis. J Cell Biol 182:1127–1139

    Article  PubMed  CAS  Google Scholar 

  31. Nezis IP, Lamark T, Velentzas AD et al. (2009) Cell death during Drosophila melanogaster early oogenesis is mediated through autophagy. Autophagy 5:298–302

    PubMed  CAS  Google Scholar 

  32. Willard SS, Koss CM, Cronmiller C (2006) Chronic cocaine exposure in Drosophila: life, cell death and oogenesis. Dev Biol 296:150–163

    Article  PubMed  CAS  Google Scholar 

  33. Panagopoulos DJ, Chavdoula ED, Nezis IP, Margaritis LH (2007) Cell death induced by GSM 900-MHz and DCS 1800-MHz mobile telephony radiation. Mutat Res 626:69–78

    PubMed  CAS  Google Scholar 

  34. Peterson JS, Bass BP, Jue D, Rodriguez A, Abrams JM, McCall K (2007) Noncanonical cell death pathways act during Drosophila oogenesis. Genesis 45:396–404

    Article  PubMed  CAS  Google Scholar 

  35. Chen C, Jack J, Garofalo RS (1996) The Drosophila insulin receptor is required for normal growth. Endocrinology 137:846–856

    Article  PubMed  CAS  Google Scholar 

  36. Tatar M, Kopelman A, Epstein D, Tu MP, Yin CM, Garofalo RS (2001) A mutant Drosophila insulin receptor homolog that extends life-span and impairs neuroendocrine function. Science 292:107–110

    Article  PubMed  CAS  Google Scholar 

  37. Gruntenko NE, Raushenbach IY (2008) Interplay of JH, 20E and biogenic amines under normal and stress conditions and its effect on reproduction. J Insect Physiol 54:902–908

    Article  PubMed  CAS  Google Scholar 

  38. Terashima J, Takaki K, Sakurai S, Bownes M (2005) Nutritional status affects 20-hydroxyecdysone concentration and progression of oogenesis in Drosophila melanogaster. J Endocrinol 187:69–79

    Article  PubMed  CAS  Google Scholar 

  39. Buszczak M, Freeman MR, Carlson JR, Bender M, Cooley L, Segraves WA (1999) Ecdysone response genes govern egg chamber development during mid-oogenesis in Drosophila. Development 126:4581–4589

    PubMed  CAS  Google Scholar 

  40. Terashima J, Bownes M (2004) Translating available food into the number of eggs laid by Drosophila melanogaster. Genetics 167:1711–1719

    Article  PubMed  CAS  Google Scholar 

  41. Terashima J, Bownes M (2006) E75A and E75B have opposite effects on the apoptosis/development choice of the Drosophila egg chamber. Cell Death Differ 13:454–464

    Article  PubMed  CAS  Google Scholar 

  42. Terashima J, Bownes M (2005) A microarray analysis of genes involved in relating egg production to nutritional intake in Drosophila melanogaster. Cell Death Differ 12:429–440

    Article  PubMed  CAS  Google Scholar 

  43. Tu MP, Yin CM, Tatar M (2002) Impaired ovarian ecdysone synthesis of Drosophila melanogaster insulin receptor mutants. Aging Cell 1:158–160

    Article  PubMed  CAS  Google Scholar 

  44. Orme MH, Leevers SJ (2005) Flies on steroids: the interplay between ecdysone and insulin signaling. Cell Metab 2:277–278

    Article  PubMed  CAS  Google Scholar 

  45. Velentzas AD, Nezis IP, Stravopodis DJ, Papassideri IS, Margaritis LH (2007) Apoptosis and autophagy function cooperatively for the efficacious execution of programmed nurse cell death during Drosophila virilis oogenesis. Autophagy 3:130–132

    PubMed  CAS  Google Scholar 

  46. Velentzas AD, Nezis IP, Stravopodis DJ, Papassideri IS, Margaritis LH (2007) Mechanisms of programmed cell death during oogenesis in Drosophila virilis. Cell Tissue Res 327:399–414

    Article  PubMed  Google Scholar 

  47. Peterson JS, Barkett M, McCall K (2003) Stage-specific regulation of caspase activity in Drosophila oogenesis. Dev Biol 260:113–123

    Article  PubMed  CAS  Google Scholar 

  48. Mazzalupo S, Cooley L (2006) Illuminating the role of caspases during Drosophila oogenesis. Cell Death Differ 13:1950–1959

    Article  PubMed  CAS  Google Scholar 

  49. Laundrie B, Peterson JS, Baum JS et al (2003) Germline cell death in inhibited by P element insertions in the dcp-1/pita nested gene pair in Drosophila. Genetics 165:1881–1888

    PubMed  CAS  Google Scholar 

  50. Baum JS, Arama E, Steller H, McCall K (2007) The Drosophila caspases Strica and Dronc function redundantly in programmed cell death during oogenesis. Cell Death Differ 14:1508–1517

    Article  PubMed  CAS  Google Scholar 

  51. Foley K, Cooley L (1998) Apoptosis in late stage Drosophila nurse cells does not require genes within the H99 deficiency. Development 125:1075–1082

    PubMed  CAS  Google Scholar 

  52. Gutzeit HO (1986) The role of microfilaments in cytoplasmic streaming in Drosophila follicles. J Cell Science 80:159–169

    PubMed  CAS  Google Scholar 

  53. Cooley L, Verheyen E, Ayers K (1992) chickadee encodes a profilin required for intercellular cytoplasm transport during Drosophila oogenesis. Cell 69:173–184

    Article  PubMed  CAS  Google Scholar 

  54. Cooley L, Theurkauf WE (1994) Cytoskeletal functions during Drosophila oogenesis. Science 266:590–596

    Article  PubMed  CAS  Google Scholar 

  55. Twombly V, Blackman RK, Jin H, Graff JM, Padgett RW, Gelbart WM (1996) The TGF-beta signaling pathway is essential for Drosophila oogenesis. Development 122:1555–1565

    PubMed  CAS  Google Scholar 

  56. McCall K, Steller H (1998) Requirement for DCP-1 caspase during Drosophila oogenesis. Science 279:230–234

    Article  PubMed  CAS  Google Scholar 

  57. Page AR, Kovacs A, Deak P et al (2005) Spotted-dick, a zinc-finger protein of Drosophila required for expression of Orc4 and S phase. EMBO J 24:4304–4315

    Article  PubMed  CAS  Google Scholar 

  58. Myster DL, Bonnette PC, Duronio RJ (2000) A role for the DP subunit of the E2F transcription factor in axis determination during Drosophila oogenesis. Development 127:3249–3261

    PubMed  CAS  Google Scholar 

  59. Royzman I, Hayashi-Hagihara A, Dej KJ, Bosco G, Lee JY, Orr-Weaver TL (2002) The E2F cell cycle regulator is required for Drosophila nurse cell DNA replication and apoptosis. Mech Dev 119:225–237

    Article  PubMed  CAS  Google Scholar 

  60. Nezis IP, Stravopodis DJ, Margaritis LH, Papassideri IS (2006) Chromatin condensation of ovarian nurse and follicle cells is regulated independently from DNA fragmentation during Drosophila late oogenesis. Differentiation 74:293–304

    Article  PubMed  CAS  Google Scholar 

  61. Tait SW, Green DR (2008) Caspase-independent cell death: leaving the set without the final cut. Oncogene 27:6452–6461

    Article  PubMed  CAS  Google Scholar 

  62. Bass BP, Cullen K, McCall K (2007) The axon guidance gene lola is required for programmed cell death in the Drosophila ovary. Dev Biol 304:771–785

    Article  PubMed  CAS  Google Scholar 

  63. Zhang W, Wang Y, Long J, Girton J, Johansen J, Johansen KM (2003) A developmentally regulated splice variant from the complex lola locus encoding multiple different zinc finger domain proteins interacts with the chromosomal kinase JIL-1. J Biol Chem 278:11696–11704

    Article  PubMed  CAS  Google Scholar 

  64. Bao X, Zhang W, Krencik R et al (2005) The JIL-1 kinase interacts with lamin Dm0 and regulates nuclear lamina morphology of Drosophila nurse cells. J Cell Sci 118:5079–5087

    Article  PubMed  CAS  Google Scholar 

  65. Cavaliere V, Taddei C, Gargiulo G (1998) Apoptosis of nurse cells at the late stages of oogenesis. Dev Genes Evol 208:106–112

    Article  PubMed  CAS  Google Scholar 

  66. Nagata S (2005) DNA degradation in development and programmed cell death. Annu Rev Immunol 23:853–875

    Article  PubMed  CAS  Google Scholar 

  67. Parrish JZ, Xue D (2006) Cuts can kill: the roles of apoptotic nucleases in cell death and animal development. Chromosoma 115:89–97

    Article  PubMed  CAS  Google Scholar 

  68. Evans CJ, Aguilera RJ (2003) DNase II: genes, enzymes and function. Gene 322:1–15

    Article  PubMed  CAS  Google Scholar 

  69. Mukae N, Yokoyama H, Yokokura T, Sakoyama Y, Nagata S (2002) Activation of the innate immunity in Drosophila by endogenous chromosomal DNA that escaped apoptotic degradation. Genes Dev 16:2662–2671

    Article  PubMed  CAS  Google Scholar 

  70. Bass BP, Tanner EA, Mateos San Martin D, Blute T, Kinser RD, Dolph PJ, McCall K (2009) Cell-autonomous requirement for DNaseII in non-apoptotic cell death. Cell Death Differ (in press)

  71. Nakano Y, Fujitani K, Kurihara J et al (2001) Mutations in the novel membrane protein Spinster interfere with programmed cell death and cause neural degeneration in Drosophila melanogaster. Mol Cell Biol 21:3775–3788

    Article  PubMed  CAS  Google Scholar 

  72. Matova N, Mahanjan-Miklos S, Mooseker MS, Cooley L (1999) Drosophila Quail, a villin-related protein, bundles actin filaments in apoptotic nurse cells. Development 126:5645–5657

    PubMed  CAS  Google Scholar 

  73. Cox RT, Spradling AC (2003) A Balbiani body and the fusome mediate mitochondrial inheritance during Drosophila oogenesis. Development 130:1579–1590

    Article  PubMed  CAS  Google Scholar 

  74. Besse F, Pret AM (2003) Apoptosis-mediated cell death within the ovarian polar cell lineage of Drosophila melanogaster. Development 130:1017–1027

    Article  PubMed  CAS  Google Scholar 

  75. Montell DJ, Rorth P, Spradling AC (1992) Slow border cells, a locus required for a developmentally regulated cell migration during oogenesis, encodes Drosophila C/EBP. Cell 71:51–62

    Article  PubMed  CAS  Google Scholar 

  76. Pret A-M, Khammari A, Agnes F, Gandille P, Boissonneau E (2008) Physiological apoptosis in the Drosophila ovarian polar cell lineage involves hid-mediated activation of a Diap1/Dronc/Drice cascade. In 49th Annual Drosophila Research Conference. 2008

  77. Nezis IP, Stravopodis DJ, Papassideri I, Robert-Nicoud M, Margaritis LH (2002) Dynamics of apoptosis in the ovarian follicle cells during the late stages of Drosophila oogenesis. Cell Tissue Res 307:401–409

    Article  PubMed  Google Scholar 

  78. Nezis IP, Stravopodis DJ, Margaritis LH, Papassideri IS (2006) Autophagy is required for the degeneration of the ovarian follicular epithelium in higher Diptera. Autophagy 2:297–298

    PubMed  CAS  Google Scholar 

  79. Romani P, Bernardi F, Hackney J, Dobens L, Gargiulo G, Cavaliere V (2009) Cell survival and polarity of Drosophila follicle cells require the activity of Ecdysone Receptor B1 isoform. Genetics 181:165–175

    Article  PubMed  Google Scholar 

  80. Mehrotra S, Maqbool SB, Kolpakas A, Murnen K, Calvi BR (2008) Endocycling cells do not apoptose in response to DNA rereplication genotoxic stress. Genes Dev 22:3158–3171

    Article  PubMed  CAS  Google Scholar 

  81. Zhang Y, Lin N, Carroll PM et al (2008) Epigenetic blocking of an enhancer region controls irradiation-induced proapoptotic gene expression in Drosophila embryos. Dev Cell 14:481–493

    Article  PubMed  CAS  Google Scholar 

  82. Krysko DV, Diez-Fraile A, Criel G, Svistunov AA, Vandenabeele P, D’Herde K (2008) Life and death of female gametes during oogenesis and folliculogenesis. Apoptosis 13:1065–1087

    Article  PubMed  Google Scholar 

  83. Bhalla N, Dernburg AF (2005) A conserved checkpoint monitors meiotic chromosome synapsis in Caenorhabditis elegans. Science 310:1683–1686

    Article  PubMed  CAS  Google Scholar 

  84. Khetani RS, Bickel SE (2007) Regulation of meiotic cohesion and chromosome core morphogenesis during pachytene in Drosophila oocytes. J Cell Sci 120:3123–3137

    Article  PubMed  CAS  Google Scholar 

  85. Kwintkiewicz J, Giudice LC (2009) The interplay of insulin-like growth factors, gonadotropins, and endocrine disruptors in ovarian follicular development and function. Semin Reprod Med 27:43–51

    Article  PubMed  CAS  Google Scholar 

  86. Escobar ML, Echeverria OM, Ortiz R, Vazquez-Nin GH (2008) Combined apoptosis and autophagy, the process that eliminates the oocytes of atretic follicles in immature rats. Apoptosis 13:1253–1266

    Article  PubMed  CAS  Google Scholar 

  87. Baum JS, St George JP, McCall K (2005) Programmed cell death in the germline. Semin Cell Dev Biol 16:245–259

    Article  PubMed  CAS  Google Scholar 

  88. Cardone MH, Roy N, Stennicke HR, Salvesen GS, Franke TF, Stanbridge E et al (1998) Regulation of cell death protease caspase-9 by phosphorylation. Science 282:1318–1321

    Article  PubMed  CAS  Google Scholar 

  89. Datta SR, Dudek H, Tao X, Masters S, Fu H, Gotoh Y et al (1997) Akt phosphorylation of BAD couples survival signals to the cell-intrinsic death machinery. Cell 91:231–241

    Article  PubMed  CAS  Google Scholar 

  90. Tracey WD Jr, Ning X, Klingler M, Kramer SG, Gergen JP (2000) Quantitative analysis of gene function in the Drosophila embryo. Genetics 154:273–284

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Jeanne Peterson and Christy Li for comments on the manuscript, and Horacio Frydman and members of our lab for helpful discussions. Supported by NIH grant R01 GM60574 (KM).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kimberly McCall.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pritchett, T.L., Tanner, E.A. & McCall, K. Cracking open cell death in the Drosophila ovary. Apoptosis 14, 969–979 (2009). https://doi.org/10.1007/s10495-009-0369-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10495-009-0369-z

Keywords

Navigation