Skip to main content

Advertisement

Log in

The c-Abl tyrosine kinase stabilizes Pitx1 in the apoptotic response to DNA damage

  • Original Paper
  • Published:
Apoptosis Aims and scope Submit manuscript

Abstract

In the DNA damage response, c-Abl tyrosine kinase is transiently accumulated in the nucleus and induces apoptosis; however, little is known about the mechanism underlying apoptosis induction via nuclear c-Abl. Here we demonstrate that the expression of human pituitary homeobox 1 (Pitx1) transcription factor is increased after DNA damage. Notably, c-Abl controls augmentation of Pitx1 at the post-transcriptional level. Overexpression of c-Abl induces tyrosine phosphorylation of Pitx1, either directly or indirectly. We also show that, upon exposure to genotoxic stress, overexpression of Pitx1 is associated with marked induction of apoptosis that is independent of p53 status. Importantly, inhibition of c-Abl kinase activity substantially attenuates Pitx1-mediated apoptosis. These findings provide evidence that c-Abl participates in modulating Pitx1 expression in the apoptotic response to DNA damage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Taagepera S, McDonald D, Loeb JE et al (1998) Nuclear-cytoplasmic shuttling of C-ABL tyrosine kinase. Proc Natl Acad Sci USA 95:7457–7462

    Article  CAS  PubMed  Google Scholar 

  2. Wang JY (2000) Regulation of cell death by the Abl tyrosine kinase. Oncogene 19:5643–5650

    Article  CAS  PubMed  Google Scholar 

  3. Pendergast AM (2002) The Abl family kinases: mechanisms of regulation and signaling. Adv Cancer Res 85:51–100

    Article  CAS  PubMed  Google Scholar 

  4. Wetzler M, Talpaz M, Van Etten RA, Hirsh-Ginsberg C, Beran M, Kurzrock R (1993) Subcellular localization of Bcr, Abl, and Bcr-Abl proteins in normal and leukemic cells and correlation of expression with myeloid differentiation. J Clin Invest 92:1925–1939

    Article  CAS  PubMed  Google Scholar 

  5. Zhu J, Wang JY (2004) Death by Abl: a matter of location. Curr Top Dev Biol 59:165–192

    Article  CAS  PubMed  Google Scholar 

  6. Kharbanda S, Yuan ZM, Weichselbaum R, Kufe D (1998) Determination of cell fate by c-Abl activation in the response to DNA damage. Oncogene 17:3309–3318

    Article  PubMed  Google Scholar 

  7. Yoshida K (2008) Nuclear trafficking of pro-apoptotic kinases in response to DNA damage. Trends Mol Med 14:305–313

    Article  CAS  PubMed  Google Scholar 

  8. Yoshida K, Yamaguchi T, Natsume T, Kufe D, Miki Y (2005) JNK phosphorylation of 14-3-3 proteins regulates nuclear targeting of c-Abl in the apoptotic response to DNA damage. Nat Cell Biol 7:278–285

    Article  CAS  PubMed  Google Scholar 

  9. Aitken A, Baxter H, Dubois T et al (2002) Specificity of 14-3-3 isoform dimer interactions and phosphorylation. Biochem Soc Trans 30:351–360

    Article  CAS  PubMed  Google Scholar 

  10. Nihira K, Taira N, Miki Y, Yoshida K (2008) TTK/Mps1 controls nuclear targeting of c-Abl by 14-3-3-coupled phosphorylation in response to oxidative stress. Oncogene 27:7285–7295

    Article  CAS  PubMed  Google Scholar 

  11. Raina D, Ahmad R, Kumar S et al (2006) MUC1 oncoprotein blocks nuclear targeting of c-Abl in the apoptotic response to DNA damage. EMBO J 25:3774–3783

    Article  CAS  PubMed  Google Scholar 

  12. Mancini M, Corradi V, Petta S, Martinelli G, Barbieri E, Santucci MA (2010) mTOR inhibitor RAD001 (Everolimus) enhances the effects of imatinib in chronic myeloid leukemia by raising the nuclear expression of c-ABL protein. Leuk Res 34:641–648

    Article  CAS  PubMed  Google Scholar 

  13. Mancini M, Veljkovic N, Corradi V et al (2009) 14-3-3 Ligand prevents nuclear import of c-ABL protein in chronic myeloid leukemia. Traffic 10:637–647

    Article  CAS  PubMed  Google Scholar 

  14. Preyer M, Shu CW, Wang JY (2007) Delayed activation of Bax by DNA damage in embryonic stem cells with knock-in mutations of the Abl nuclear localization signals. Cell Death Differ 14:1139–1148

    Article  CAS  PubMed  Google Scholar 

  15. Quentien MH, Barlier A, Franc JL, Pellegrini I, Brue T, Enjalbert A (2006) Pituitary transcription factors: from congenital deficiencies to gene therapy. J Neuroendocrinol 18:633–642

    Article  CAS  PubMed  Google Scholar 

  16. Lanctot C, Lamolet B, Drouin J (1997) The bicoid-related homeoprotein Ptx1 defines the most anterior domain of the embryo and differentiates posterior from anterior lateral mesoderm. Development 124:2807–2817

    CAS  PubMed  Google Scholar 

  17. Szeto DP, Rodriguez-Esteban C, Ryan AK et al (1999) Role of the Bicoid-related homeodomain factor Pitx1 in specifying hindlimb morphogenesis and pituitary development. Genes Dev 13:484–494

    Article  CAS  PubMed  Google Scholar 

  18. Liu DX, Lobie PE (2007) Transcriptional activation of p53 by Pitx1. Cell Death Differ 14:1893–1907

    Article  CAS  PubMed  Google Scholar 

  19. Yoshida K, Komatsu K, Wang HG, Kufe D (2002) c-Abl tyrosine kinase regulates the human Rad9 checkpoint protein in response to DNA damage. Mol Cell Biol 22:3292–3300

    Article  CAS  PubMed  Google Scholar 

  20. Yoshida K, Wang HG, Miki Y, Kufe D (2003) Protein kinase Cδ is responsible for constitutive and DNA damage-induced phosphorylation of Rad9. EMBO J 22:1431–1441

    Article  CAS  PubMed  Google Scholar 

  21. Yoshida K, Yamaguchi T, Shinagawa H, Taira N, Nakayama KI, Miki Y (2006) Protein kinase C δ activates topoisomerase IIα to induce apoptotic cell death in response to DNA damage. Mol Cell Biol 26:3414–3431

    Article  CAS  PubMed  Google Scholar 

  22. Yoshida K, Kufe D (2001) Negative regulation of the SHPTP1 protein tyrosine phosphatase by protein kinase C δ in response to DNA damage. Mol Pharmacol 60:1431–1438

    CAS  PubMed  Google Scholar 

  23. Yoshida K, Kharbanda S, Kufe D (1999) Functional interaction between SHPTP1 and the Lyn tyrosine kinase in the apoptotic response to DNA damage. J Biol Chem 274:34663–34668

    Article  CAS  PubMed  Google Scholar 

  24. Yoshida K, Weichselbaum R, Kharbanda S, Kufe D (2000) Role for Lyn tyrosine kinase as a regulator of stress-activated protein kinase activity in response to DNA damage. Mol Cell Biol 20:5370–5380

    Article  CAS  PubMed  Google Scholar 

  25. Yoshida K, Miki Y, Kufe D (2002) Activation of SAPK/JNK signaling by protein kinase Cδ in response to DNA damage. J Biol Chem 277:48372–48378

    Article  CAS  PubMed  Google Scholar 

  26. Taira N, Nihira K, Yamaguchi T, Miki Y, Yoshida K (2007) DYRK2 is targeted to the nucleus and controls p53 via Ser46 phosphorylation in the apoptotic response to DNA damage. Mol Cell 25:725–738

    Article  CAS  PubMed  Google Scholar 

  27. Yoshida K, Liu H, Miki Y (2006) Protein kinase C δ regulates Ser46 phosphorylation of p53 tumor suppressor in the apoptotic response to DNA damage. J Biol Chem 281:5734–5740

    Article  CAS  PubMed  Google Scholar 

  28. Jia LQ, Osada M, Ishioka C et al (1997) Screening the p53 status of human cell lines using a yeast functional assay. Mol Carcinog 19:243–253

    Article  CAS  PubMed  Google Scholar 

  29. Lamonerie T, Tremblay JJ, Lanctot C, Therrien M, Gauthier Y, Drouin J (1996) Ptx1, a bicoid-related homeo box transcription factor involved in transcription of the pro-opiomelanocortin gene. Genes Dev 10:1284–1295

    Article  CAS  PubMed  Google Scholar 

  30. Yoshida K, Miki Y (2005) Enabling death by the Abl tyrosine kinase: mechanisms for nuclear shuttling of c-Abl in response to DNA damage. Cell Cycle 4:777–779

    CAS  PubMed  Google Scholar 

  31. Agami R, Blandino G, Oren M, Shaul Y (1999) Interaction of c-Abl and p73alpha and their collaboration to induce apoptosis. Nature 399:809–813

    Article  CAS  PubMed  Google Scholar 

  32. Yuan ZM, Shioya H, Ishiko T et al (1999) p73 is regulated by tyrosine kinase c-Abl in the apoptotic response to DNA damage. Nature 399:814–817

    Article  CAS  PubMed  Google Scholar 

  33. Gong JG, Costanzo A, Yang HQ et al (1999) The tyrosine kinase c-Abl regulates p73 in apoptotic response to cisplatin-induced DNA damage. Nature 399:806–809

    Article  CAS  PubMed  Google Scholar 

  34. Liu X, Huang W, Li C et al (2006) Interaction between c-Abl and Arg tyrosine kinases and proteasome subunit PSMA7 regulates proteasome degradation. Mol Cell 22:317–327

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank Dr. Lobie for GFP-Pitx1 plasmid. This work was supported by grants from the Ministry of Education, Science and Culture of Japan (to K.Y. and Y.M.), Takeda Science Foundation (to K.Y.), Senri Life Science Foundation (to K.Y.), Kowa Life Science Foundation (to K.Y.), and Sankyo Foundation of Life Science (to K.Y.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kiyotsugu Yoshida.

Additional information

K. Yoshida and Y. Miki share senior authorship.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yamaguchi, T., Miki, Y. & Yoshida, K. The c-Abl tyrosine kinase stabilizes Pitx1 in the apoptotic response to DNA damage. Apoptosis 15, 927–935 (2010). https://doi.org/10.1007/s10495-010-0488-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10495-010-0488-6

Keywords

Navigation