Skip to main content
Log in

The Effect of Assortative Mating upon Genetic Association Studies: Spurious Associations and Population Substructure in the Absence of Admixture

  • Published:
Behavior Genetics Aims and scope Submit manuscript

Abstract

Spurious associations due to confounding factors are an often cited and intensely debated concern for genetic association studies. Great attention has been focused upon the specific threat of confounding due to population stratification. This emphasis has spurred the development of many statistical genetic methods to detect and correct for the potentially confounding effects of admixture. Unfortunately, this emphasis on admixture has led some authors to suggest that if ethnically homogenous populations are used, spurious associations are unlikely to occur. We show that under small and realistic degrees of assortative mating over time, spurious associations arise even in ethnically homogeneous populations. We demonstrate that structured association and genomic control tests can, under certain conditions, correct for these spurious associations. We conclude that investigators should not assume spurious associations will not occur in association studies using ethnically homogenous populations and recommend the use of genomic control methods and/or family-based association tests within genetic association studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.

Similar content being viewed by others

References

  • Adams G. T., Snieder H., McKie V. C., Clair B., Brambilla D., Adams R. J., Kutlar A. (2003). Genetic risk factors for cerebrovascular disease in children with sickle cell disease: design of a case–control association study and genomewide screen. BMC Med. Genet. 4:6

    Article  PubMed  Google Scholar 

  • Ahern F. M., Johnson R. C., Wilson J. R., McClearn G. E., Vandenberg S. G. (1982). Family resemblances in personality. Behav. Genet. 12:261–280

    Article  PubMed  CAS  Google Scholar 

  • Allison D. B. (1997). Transmission–disequilibrium tests for quantitative traits. Am. J. Hum. Genet. 60:676–690

    PubMed  CAS  Google Scholar 

  • Allison D. B., Neale M. C. (2001). Joint tests of linkage and association for quantitative traits. Theor. Popul. Biol. 60:239–251

    Article  PubMed  CAS  Google Scholar 

  • Allison D. B., Neale M. C., Kezis M. I., Alfonso V. C., Heshka S., Heymsfield S. B. (1996). Assortative mating for relative weight: genetic implications. Behav. Genet. 26:103–111

    Article  PubMed  CAS  Google Scholar 

  • Ardlie K. G., Lunetta K. L., Seielstad M. (2002). Testing for population subdivision and association in four case–control studies. Am. J. Hum. Genet. 71:304–311

    Article  PubMed  CAS  Google Scholar 

  • Cardon L. R., Palmer L. J. (2003). Population stratification and spurious allelic association. Lancet 361:598–604

    Article  PubMed  Google Scholar 

  • Deng H. W. (2001). Population admixture may appear to mask, change or reverse genetic effects of genes underlying complex traits. Genetics 159:1319–1323

    PubMed  CAS  Google Scholar 

  • Devlin B., Roeder K. (1999). Genomic control for association studies. Biometrics 55:155–166

    Article  Google Scholar 

  • Dufouil C., Alperovitch A. (2000). Couple similarities for cognitive functions and psychological health. J. Clin. Epidemiol. 53:589–593

    Article  PubMed  CAS  Google Scholar 

  • Ewens W. J., Spielman R. S. (1995). The transmission/disequilibrium test: history, subdivision, and admixture. Am. J. Hum. Genet. 57:455–464

    PubMed  CAS  Google Scholar 

  • Friedlander Y., Kark J. D., Stein Y. (1998). Family resemblance for serum uric acid in a Jerusalem sample of families. Hum. Genet. 79:58–63

    Article  Google Scholar 

  • Freedman M. L., Reich D., Penney K. L., McDonald G. L., Mignault A. A., Patterson N., Gabriel S. B., Topol E. J., Smoller J. W., Pato C. N., Pato M. T., Petryshen T. L., Kolonel L. N., Lander E. S., Sklar P., Henderson B., Hirschhorn J. N., Altshuler D. (2004). Assessing the impact of population stratification on genetic association studies. Nat. Genet. 36:388–393

    Article  PubMed  CAS  Google Scholar 

  • Garn S., Sullivan T. V., Hawthorne V. M. (1989). The education of one spouse and the fatness of the other spouse. Am. J. Hum. Biol. 1: 233–238

    Article  Google Scholar 

  • Hoggart C. J., Parra E. J., Shriver M. D., Bonilla C., Kittles R. A., Clayton D. G., McKeigue P. M. (2003). Control of confounding of genetic association in stratified populations. Am. J. Hum. Genet. 72:1492–1504

    Article  PubMed  CAS  Google Scholar 

  • Hunt S. C., Dadone M. M., Williams R. R., Wu L. L., Smith J. B., Kuida H., Ash K. O. (1987). Familial correlations from genes and shared environment for urine, plasma, and intraerythrocytic sodium. Am. J. Med. Genet. 27: 249–255

    Article  PubMed  CAS  Google Scholar 

  • Lynch M., Walsh B. (1998). Genetics and Analysis of Quantitative Traits. Vol 1, Sinauer Associates, INC, Sunderland, MA

    Google Scholar 

  • Morton N. E., Collins A. (1998). Tests and estimates of allelic association in complex inheritance. Proc. Natl. Acad. Sci. USA 95:11389–11393

    Article  PubMed  CAS  Google Scholar 

  • Nadeau J. H., Frankel W. N. (2000). The roads from phenotypic variation to gene discovery: mutagenesis versus QTLs. Nat. Genet. 25:381–384

    Article  PubMed  CAS  Google Scholar 

  • Pérusse L., Bouchard C. (1994). Genetics of energy intake and food preferences. In: Bouchard C. (ed) The Genetics of Obesity. CRC Press, Boca Raton, pp. 125–134

    Google Scholar 

  • Pritchard J. K., Rosenberg N. A. (1999). Use of unlinked genetic markers to detect population stratificaton in association studies. Am. J. Hum. Genet. 65:220–228

    Article  PubMed  CAS  Google Scholar 

  • Pritchard J. K., Stephens M., Rosenberg N. A., Donnelley P. (2001). Association mapping in structured populations. Am. J. Hum. Genet. 67:170–181

    Article  Google Scholar 

  • Risch N., Merikangas K. (1996). The future of genetic studies of complex human diseases. Science 273:1516–1517

    Article  PubMed  CAS  Google Scholar 

  • Satten G. A., Flanders W. D., Yang Q. (2001). Accounting for unmeasured population substructure in case control studies of genetic association studies using a novel latent-class structure. Am. J. Hum. Genet. 68:466–477

    Article  PubMed  CAS  Google Scholar 

  • Speers M. A., Kasl S. V., Freeman D. H. Jr., Ostfeld A. M. (1986). Blood pressure concordance between spouses. Am. J. Epidemiol. 123:818–829

    PubMed  CAS  Google Scholar 

  • Spielman R. S., McGinnis R. E., Ewens W. J. (1993). Transmission test for linkage disequilibrium: the insulin gene region and insulin-dependent diabetes mellitus (IDDM). Am. J. Hum. Genet. 52:506–516

    PubMed  CAS  Google Scholar 

  • Thomas D. C., Witte J. S. (2002). Point: population Stratification – a problem for case–control studies of candidate–gene associations? Cancer Epidemiol. Biomarkers Prev. 11:505–512

    PubMed  Google Scholar 

  • Wacholder S., Rothman N., Caporaso N. (2002). Counterpoint: bias from population stratification is not a major threat to the validity of conclusions from epidemiological studies of common polymorphisms and cancer. Cancer Epidemiol. Biomarkers Prev. 11:513–520

    PubMed  Google Scholar 

  • Whittaker J. C., Morris A. P. (2001). Family-based tests of association and/or linkage. Ann. Hum. Genet. 65:407–419

    Article  PubMed  CAS  Google Scholar 

  • Zhao H. (2000). Family-based association studies. Stat. Methods Med. Res. 9:563–587

    Article  PubMed  CAS  Google Scholar 

Download references

ACKNOWLEDGMENT

Supported in part by NIH Grants: K25DK062817, R01DK056366, R01ES009912, U54CA100949.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David T. Redden.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Redden, D.T., Allison, D.B. The Effect of Assortative Mating upon Genetic Association Studies: Spurious Associations and Population Substructure in the Absence of Admixture. Behav Genet 36, 678–686 (2006). https://doi.org/10.1007/s10519-006-9060-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10519-006-9060-0

KEY WORDS

Navigation