Skip to main content
Log in

Rank-Based Inverse Normal Transformations are Increasingly Used, But are They Merited?

  • Original Research
  • Published:
Behavior Genetics Aims and scope Submit manuscript

Abstract

Many complex traits studied in genetics have markedly non-normal distributions. This often implies that the assumption of normally distributed residuals has been violated. Recently, inverse normal transformations (INTs) have gained popularity among genetics researchers and are implemented as an option in several software packages. Despite this increasing use, we are unaware of extensive simulations or mathematical proofs showing that INTs have desirable statistical properties in the context of genetic studies. We show that INTs do not necessarily maintain proper Type 1 error control and can also reduce statistical power in some circumstances. Many alternatives to INTs exist. Therefore, we contend that there is a lack of justification for performing parametric statistical procedures on INTs with the exceptions of simple designs with moderate to large sample sizes, which makes permutation testing computationally infeasible and where maximum likelihood testing is used. Rigorous research evaluating the utility of INTs seems warranted.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Akritas MG (1990) The rank transform method on some two factor designs. J Am Stat Assoc 85:73–78. doi:10.2307/2289527

    Article  Google Scholar 

  • Allison DB, Neale MC, Zannolli RZ, Schork NJ, Amos CI, Blangero J (1999) Testing the robustness of the likelihood ratio test in a variance-component quantitative trait loci (QTL) mapping procedure. Am J Hum Genet 65:531–544. doi:10.1086/302487

    Article  PubMed  Google Scholar 

  • Allison DB, Cui X, Page GP, Sabripour M (2006) Microarray data analysis: from disarray to consolidation and consensus. Nat Rev Genet 7(1):55–65. doi:10.1038/nrg1749

    Article  PubMed  Google Scholar 

  • Almasy L, Blangero J (1998) Multipoint quantitative trait linkage analysis in general pedigrees. Am J Hum Genet 62:1198–1211. doi:10.1086/301844

    Article  PubMed  Google Scholar 

  • Amos CI (1994) Robust variance-components approach for assessing genetic linkage in pedigrees. Am J Hum Genet 54:535–543

    PubMed  Google Scholar 

  • Analysis System 130 (2003) Method and apparatus for analysis of data from biomolecular arrays, US Patent 6516276, (http://www.patentstorm.us/patents/6516276-description.html)

  • Anokhin AP, Heath AC, Ralano A (2003) Genetic influences on frontal brain function: WCST performance in twins. NeuroReport 14(15):1975–1978. doi:10.1097/00001756-200310270-00019

    Article  PubMed  Google Scholar 

  • Ashton GC, Borecki IB (1987) Further evidence for a gene influencing spatial ability. Behav Genet 17(3):243–256. doi:10.1007/BF01065504

    Article  PubMed  Google Scholar 

  • Barnard GA (1957) Mathematical gazette, 41(338), 298–300. Review of: Tafeln zum Vergleich Zweier Stichproben mittels X-Test und Zeichentest tables for comparing two samples by X-test and sign test by B. L. van der Waerden; E. Nievergelt. doi:10.2307/3610142

  • Basrak B, Klaassen CA, Beekman M, Martin NG, Boomsma DI (2004) Copulas in QTL mapping. Behav Genet 34(2):161–171. doi:10.1023/B:BEGE.0000013730.63991.ba

    Article  PubMed  Google Scholar 

  • Beasley TM (2002) Multivariate aligned rank test for interactions in multiple group repeated measures designs. Multiv Behav Res 37:197–226. doi:10.1207/S15327906MBR3702_02

    Article  Google Scholar 

  • Beasley TM, Zumbo BD (2003) Comparison of aligned Friedman rank and parametric methods for testing interactions in split-plot designs. Comput Stat Data Anal 42(4):569–593

    Article  Google Scholar 

  • Berry WD (1993) Understanding regression assumptions. Sage, Newbury Park

    Google Scholar 

  • Blair RC, Sawilowsky SS, Higgins JJ (1987) Limitations of the rank transform statistic in test for interactions. Comm Stat-Simul Comp 16(113):3–1145

    Google Scholar 

  • Bliss CI (1967) Statistics in biology. McGraw-Hill, New York

    Google Scholar 

  • Blom G (1958) Statistical estimates and transformed beta-variables. Wiley, New York

    Google Scholar 

  • Blonigen DM, Carlson SR, Krueger RF, Patrick CJ (2003) A twin study of self-reported psychopathic personality traits. Pers Individ Dif 35:179–197. doi:10.1016/S0191-8869(02)00184-8

    Article  Google Scholar 

  • Box GEP, Cox DR (1964) An analysis of transformations. J R Stat Soc B 26:211–252

    Google Scholar 

  • Bradley JV (1968) Distribution-free statistical tests. Prentice-Hall, New York

    Google Scholar 

  • Bradley JV (1978) Robustness? Br J Math Stat Psychol 31:144–152

    Google Scholar 

  • Chen WM, Abecasis GR (2006) Estimating the power of variance component linkage analysis in large pedigrees. Genet Epidemiol 30:471–484. doi:10.1002/gepi.20160

    Article  PubMed  Google Scholar 

  • Chernoff H, Savage IR (1958) Asymptotic normality and efficiency of certain nonparametric tests. Ann Math Stat 29:972–994. doi:10.1214/aoms/1177706436

    Article  Google Scholar 

  • Cockerham CC (1954) An extension of the concept of partitioning hereditary variance for analysis of covariances among relatives when epistasis is present. Genetics 39:859–882

    PubMed  Google Scholar 

  • Conover WJ (1973) Rank tests for one sample, two samples, and k samples without the assumption of a continuous distribution function. Ann Stat 1(6):1105–1125. doi:10.1214/aos/1176342560

    Article  Google Scholar 

  • Conover WJ (1980) Practical nonparametric statistics, 2nd edn. Wiley, New York

    Google Scholar 

  • Conover WJ, Iman RL (1981) Rank transformations as a bridge between parametric and nonparametric statistics. Am Stat 35:124–133. doi:10.2307/2683975

    Article  Google Scholar 

  • Diao G, Lin DY (2005) A powerful and robust method for mapping quantitative trait loci in general pedigrees. Am J Hum Genet 77:97–111. doi:10.1086/431683

    Article  PubMed  Google Scholar 

  • Dixon AL, Liang L, Moffatt MF, Chen W, Heath S, Wong KC, Taylor J, Burnett E, Gut I, Farrall M, Lathrop GM, Abecasis GR, Cookson WO (2007) A genome-wide association study of global gene expression. Nat Genet 39(10):1202–1207. doi:10.1038/ng2109

    Article  PubMed  Google Scholar 

  • Etzel CJ, Shete S, Beasley TM, Fernandez JR, Allison DB, Amos CI (2003) Effect of box–cox transformation on power of Haseman–Elston and maximum-likelihood variance components tests to detect quantitative trait loci. Hum Hered 55:108–116. doi:10.1159/000072315

    Article  PubMed  Google Scholar 

  • Farrell P, Rogers-Stewart K (2006) Comprehensive study of tests for normality and symmetry: extending the Spiegelhalter test. J Stat Comp Simul 76(9):803–816. doi:10.1080/10629360500109023

    Article  Google Scholar 

  • Feir-Walsh BJ, Toothaker LE (1974) An empirical comparison of the ANOVA F-test, normal scores test and Kruskal–Wallis test under violation of assumptions. Educ Psychol Measur 34:789–799. doi:10.1177/001316447403400406

    Article  Google Scholar 

  • Fisher RA, Yates F (1938) Statistical tables for biological, agricultural, and medical research, 1st edn. Oliver & Boyd, Edinburgh

    Google Scholar 

  • George VT, Elston RC (1987) Testing the association between polymorphic markers and quantitative traits in pedigrees. Genet Epidemiol 4(3):193–201. doi:10.1002/gepi.1370040304

    Article  PubMed  Google Scholar 

  • Good PI (1999) Resampling methods. A practical guide to data analysis. Birkhauser, Boston

    Google Scholar 

  • Good PI (2004) Efficiency comparisons of rank and permutation tests by statistics in medicine 2001; 20:705–731. Statistics in Medicine, 23(5), 857. doi:10.1002/sim.1738

  • Hájek J, Sidák F (1967) Theory of rank tests. Academic Press and Academia, Prague

    Google Scholar 

  • Harter HL (1961) Expected values of normal order statistics. Biometrika 48:151–165

    Google Scholar 

  • Headrick TC, Rotou O (2001) An investigation of the rank transformation in multiple regression. Comput Stat Data Anal 38:203–215. doi:10.1016/S0167-9473(01)00034-2

    Article  Google Scholar 

  • Headrick TC, Sawilowsky SS (2000) Properties of the rank transformation in factorial analysis of covariance. Comm Stat-Simul Comp 29:1059–1087. doi:10.1080/03610910008813654

    Article  Google Scholar 

  • Headrick TC, Vineyard G (2001) An empirical investigation of four tests of interaction in the context of factorial analysis of covaraince. Mult Linear Regress View 27:3–15

    Google Scholar 

  • Hettmansperger TP, McKean JW (1977) A robust alternative based on ranks to least squares in analyzing linear models. Technometrics 19:275–284. doi:10.2307/1267697

    Article  Google Scholar 

  • Hicks BM, Krueger RF, Iacono WG, McGue M, Patrick CJ (2004) Family transmission and heritability of externalizing disorders: a twin-family study. Arch Gen Psychiatry 61:922–928. doi:10.1001/archpsyc.61.9.922

    Article  PubMed  Google Scholar 

  • Hicks BM, Bernat E, Malone SM, Iacono WG, Patrick CJ, Krueger RF, McGue M (2007) Genes mediate the association between P3 amplitude and externalizing disorders. Psychophysiology 44(1):98–105. doi:10.1111/j.1469-8986.2006.00471.x

    Article  PubMed  Google Scholar 

  • Higgins JJ, Tashtoush S (1994) An aligned rank transform test for interaction. Nonlinear World 1:201–211

    Google Scholar 

  • Hodges JL, Lehmann EL (1962) Rank methods for combination of independent experiments in analysis of variance. Ann Math Stat 33:482–497. doi:10.1214/aoms/1177704575

    Article  Google Scholar 

  • Hora SC, Conover WJ (1984) The F-statistic in the two-way layout with rank-score transformed data. J Am Stat Assoc 79:668–673. doi:10.2307/2288415

    Article  Google Scholar 

  • Jaeckel LA (1972) Estimating regression coefficients by minimizing the dispersion of the residuals. Ann Math Stat 43:1449–1458. doi:10.1214/aoms/1177692377

    Article  Google Scholar 

  • James GS (1959) The Behrens–Fisher distribution and weighted means. J R Stat Soc [Ser A] 21:73–80

    Google Scholar 

  • Keselman HJ, Rogan JC, Feir-Walsh BJ (1977) An evaluation of some nonparametric and parametric tests for location equality. Br J Math Stat Psychol 30:213–221

    Google Scholar 

  • Knoke JD (1991) Nonparametric analysis of covariance for comparing change in randomized studies with baseline values subject to error. Biometrics 47(2):523–533. doi:10.2307/2532143

    Article  PubMed  Google Scholar 

  • Knoll J, Ejeta G (2008) Marker-assisted selection for early-season cold tolerance in sorghum: QTL validation across populations and environments. Theor Appl Genet 116(4):541–553. doi:10.1007/s00122-007-0689-8

    Article  PubMed  Google Scholar 

  • Kohr RL, Games PA (1974) Robustness of the analysis of variance, the Welch procedure, and a Box procedure to heterogeneous variances. J Exp Educ 43:61–69

    Google Scholar 

  • Kraja AT, Corbett J, Ping A, Lin RS, Jacobsen PA, Crosswhite M, Borecki IB, Province MA (2007) Rheumatoid arthritis, item response theory, Blom transformation, and mixed models. BMC Proc 1(Suppl. 1):S116

    Article  PubMed  Google Scholar 

  • Kruskal WH, Wallis WA (1952) Use of ranks in one-criterion variance analysis. J Am Stat Assoc 47:583–621. doi:10.2307/2280779

    Article  Google Scholar 

  • Li M, Boehnke M, Abecasis GR, Song PX (2006) Quantitative trait linkage analysis using Gaussian copulas. Genetics 173(4):2317–2327. doi:10.1534/genetics.105.054650

    Article  PubMed  Google Scholar 

  • Mann HB, Whitney DR (1947) On a test of whether one of two random variables is stochastically larger than the other. Ann Math Stat 18:50–60. doi:10.1214/aoms/1177730491

    Article  Google Scholar 

  • Mansouri H, Chang G-H (1995) A comparative study of some rank tests for interaction. Comput Stat Data Anal 19:85–96. doi:10.1016/0167-9473(93)E0045-6

    Article  Google Scholar 

  • Maritz JS (1982) Distribution-free statistical methods. Chapman and Hall, London

    Google Scholar 

  • Martin LJ, Crawford MH (1998) Genetic and environmental components of thyroxine variation in Mennonites from Kansas and Nebraska. Hum Biol 70(4):745–760

    PubMed  Google Scholar 

  • McSweeney M, Penfield D (1969) The normal scores test for the c-sample problem. Br J Math Stat Psychol 20:187–204

    Google Scholar 

  • Mehta T, Tanik M, Allison DB (2004) Toward sound epistemological foundations of statistical methods for high dimensional biology. Nat Genet 36:943–947. doi:10.1038/ng1422

    Article  PubMed  Google Scholar 

  • Micceri T (1989) The unicorn, the normal curve, and other improbable creatures. Psychol Bull 105:156–166. doi:10.1037/0033-2909.105.1.156

    Article  Google Scholar 

  • Nanda NJ, Rommelse Arias-VásquezA, Altink ME, Buschgens CJM, Fliers E, Asherson P, Faraone SV, Buitelaar JK, Sergeant JA, Oosterlaan J, Franke B (2008) Neuropsychological endophenotype approach to genome-wide linkage analysis identifies susceptibility loci for ADHD on 2q21.1 and 13q12.11. Am J Hum Gen 9:9–105

    Google Scholar 

  • Neave HR, Wothington PL (1989) Distribution-free tests. Routledge, New York

    Google Scholar 

  • Peng B, Yu RK, DeHoff KL, Amos CI (2007) Normalizing a large number of quantitative traits using empirical normal quantile transformation. BMC Proc, (Suppl I), p S156

    Google Scholar 

  • POLY: Computer program for polygenic analysis and power analysis (2003) [http://www.sph.umich.edu/csg/chen/public/software/poly/]

  • Pratt JW (1964) Robustness of some procedures for the two-sample location problem. J Am Stat Assoc 59:665–680. doi:10.2307/2283092

    Article  Google Scholar 

  • Przybyla-Zawislak BD, Thorn BT, Alia SF et al (2005) Identification of rat hippocampal mRNAs altered by the mitochondrial toxicant, 3-NPA. Ann N Y Acad Sci 1053:162–173. doi:10.1196/annals.1344.014

    Article  PubMed  Google Scholar 

  • Pulli K, Karma K, Norio R, Sistonen P, Göring HH, Järvelä I (2008) Genome-wide linkage scan for loci of musical aptitude in Finnish families: evidence for a major locus at 4q22. J Med Genet 45(7):451–456. doi:10.1136/jmg.2007.056366

    Article  PubMed  Google Scholar 

  • Ray WD, Pitman A (1961) An exact distribution of the Fisher–Behrens–Welch statistic for testing the difference between the means of two normal populations with unknown variances. J R Stat Soc [Ser A] 23:377–384

    Google Scholar 

  • Salter KC, Fawcett RF (1993) The ART test of interaction: a robust and powerful test of interaction in factorial models. Comm Stat-Simul Comp 22:137–153

    Article  Google Scholar 

  • Scuteri A, Sanna S, Chen WM, Uda M, Albai G, Strait J, Najjar S, Nagaraja R, Orru M, Usala G, Dei M, Lai S, Maschio A, Busonero F, Mulas A, Ehret GB, Fink AA, Weder AB, Cooper RS, Galan P, Chakravarti A, Schlessinger D, Cao A, Lakatta E, Abecasis GR (2007) Genome-wide association scan shows genetic variants in the FTO gene are associated with obesity-related traits. PLOS Genetics 3(7):e115. doi:10.1371/journal.pgen.0030115

    Article  PubMed  Google Scholar 

  • Servin B, Stephens M (2007) Imputation-based analysis of association studies: candidate regions and quantitative traits. PLOS Genetics 3(7):e114. doi:10.1371/journal.pgen.0030114

    Article  PubMed  Google Scholar 

  • Shete S, Beasley TM, Etzel CJ, Fernández JR, Chen J, Allison DB, Amos CI (2004) Effect of Winsorization on power and type 1 error of variance components and related methods of QTL detection. Behav Genet 34:153–159. doi:10.1023/B:BEGE.0000013729.26354.da

    Article  PubMed  Google Scholar 

  • Silverman EK, Province MA, Campbell EJ, Pierce JA, Rao DC (1990) Biochemical intermediates in alpha 1-antitrypsin deficiency: residual family resemblance for total alpha 1-antitrypsin, oxidized alpha 1-antitrypsin, and immunoglobulin E after adjustment for the effect of the Pi locus. Genet Epidemiol 7(2):137–149. doi:10.1002/gepi.1370070204

    Article  PubMed  Google Scholar 

  • SOLAR: Sequential Oligogenic Linkage Analysis Routines (2008) [http://www.sfbr.org/solar/]

  • Sprent P, Smeeton NC (2001) Applied nonparametric statistical methods, 3rd edn. Chapman & Hall, London

    Google Scholar 

  • Stuart A (1954) Asymptotic relative efficiencies of distribution-free tests of randomness against normal alternatives. J Am Stat Assoc 49:147–157. doi:10.2307/2281041

    Article  Google Scholar 

  • Thompson GL (1991) A note on the rank transform for interactions. Biometrika 78:697–701. doi:10.1093/biomet/78.3.697

    Article  Google Scholar 

  • Thompson GL (1993) A correction note on the rank transform for interactions. Biometrika 80:711

    Google Scholar 

  • Toothaker LE, Newman D (1994) Nonparametric competitors to the two way ANOVA. J Educ Behav Stat 19:237–273

    Google Scholar 

  • Tukey JW (1962) The future of data analysis. Ann Math Stat 33:1–67. doi:10.1214/aoms/1177704711

    Article  Google Scholar 

  • Tzou GG, Everson DO, Bulls RC, Olson DP (1991) Classification of beef calves as protein-deficient or thermally stressed by discriminant analysis of blood constituents. J Anim Sci 69:864–873

    PubMed  Google Scholar 

  • Valdar W, Solberg LC, Gauguier D, Cookson WO, Rawlins JN, Mott R, Flint J (2006) Genetic and environmental effects on complex traits in mice. Genetics 174(2):959–984. doi:10.1534/genetics.106.060004

    Article  PubMed  Google Scholar 

  • van den Oord EJ, Simonoff E, Eaves LJ, Pickles A, Silberg J, Maes H (2000) An evaluation of different approaches for behavior genetic analyses with psychiatric symptom scores. Behav Genet 30(1):1–18. doi:10.1023/A:1002095608946

    Article  PubMed  Google Scholar 

  • van der Waerden BL (1952) Order tests for the two-sample problem and their power. Proc Koninklijke Nederlandse Akademie van Wetenschappen. Ser A 55:453–458

    Google Scholar 

  • Vargha A, Delaney HD (1998) The Kruskal-Wallis test and stochastic homogeneity. J Educ Behav Stat 23:170–192

    Google Scholar 

  • Wang K, Huang J (2002) A score-statistic approach for the mapping of quantitative-trait loci with sibships of arbitrary size. Am J Hum Genet 70(2):412–424. doi:10.1086/338659

    Article  PubMed  Google Scholar 

  • Welch BL (1947) The generalization of Student’s problem when several different population variances are involved. Biometrika 34:28–35

    Google Scholar 

  • Wilcox RR (1995) ANOVA: a paradigm for low power and misleading measures of effect size? Rev Educ Res 65:51–77

    Google Scholar 

  • Wilcoxon F (1945) Individual comparisons by ranking methods. Biometrics 1:80–83. doi:10.2307/3001968

    Article  Google Scholar 

  • Wu X, Cooper RS, Borecki I, Hanis C, Bray M, Lewis CE, Zhu X, Kan D, Luke A, Curb D (2002) A combined analysis of genomewide linkage scans for body mass index from the National Heart, Lung, and Blood Institute Family Blood Pressure Program. Am J Hum Genet 70(5):1247–1256. doi:10.1086/340362

    Article  PubMed  Google Scholar 

  • Yang R, Yi N, Xu S (2006) Box-Cox transformation for QTL mapping. Genetica 128(1–3):133–143. doi:10.1007/s10709-005-5577-z

    Article  PubMed  Google Scholar 

  • Yuen KK (1974) The two-sample trimmed t for unequal population variances. Biometrika 61:165–170

    Google Scholar 

  • Zak M, Baierl A, Bogdan M, Futschik A (2007) Locating multiple interacting quantitative trait Loci using rank-based model selection. Genetics 176(3):1845–1854. doi:10.1534/genetics.106.068031

    Article  PubMed  Google Scholar 

  • Zimmerman DW (1996) A note on homogeneity of variance of scores and ranks. J Exp Educ 64:351–362

    Google Scholar 

  • Zimmerman DW (2004) A note on preliminary tests of equality of variances. Br J Math Stat Psychol 57(1):173–181

    Article  PubMed  Google Scholar 

  • Zumbo BD, Coulombe D (1997) Investigation of the robust rank-order test for non-normal populations with unequal variances: the case of reaction time. Can J Exp Psychol 51:139–150. doi:10.1037/1196-1961.51.2.139

    Article  Google Scholar 

Download references

Acknowledgments

We thank Christian Dina for asking cogent questions that inspired this commentary and for making useful comments on an earlier draft and also thank Jay Conover, Roger Berger, Brian Hicks, Rui Feng, Michael C. Neale, Goncalo Abecasis, Bernard S. Gorman and Alfred A. Bartolucci for their helpful advice or comments on earlier drafts. This article is supported in part by NIH grants P30DK056336, U54CA100949, R01ES09912, and T32HL072757.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Mark Beasley.

Additional information

Edited by Stacey Cherny.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Beasley, T.M., Erickson, S. & Allison, D.B. Rank-Based Inverse Normal Transformations are Increasingly Used, But are They Merited?. Behav Genet 39, 580–595 (2009). https://doi.org/10.1007/s10519-009-9281-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10519-009-9281-0

Keywords

Navigation