Skip to main content

Advertisement

Log in

Lack of Association of the N-acetyltransferase NAT1*10 Allele with Prostate Cancer Incidence, Grade, or Stage Among Smokers in Finland

  • Published:
Biochemical Genetics Aims and scope Submit manuscript

Abstract

Genetic variations in xenobiotic metabolizing genes can influence susceptibility to many environmentally induced cancers. Inheritance of the N-acetyltransferase 1 allele (NAT1*10), linked with increased metabolic activation of pro-carcinogens, is associated with an increased susceptibility to many cancers in which cigarette- or meat-derived carcinogens have been implicated in their etiology. The role of NAT1*10 in prostate cancer is under studied. Although cigarette smoking is not considered a risk factor for prostate cancer, a recent review suggests it may play a role in disease progression. Consequently, we examined the association of NAT1*10 with prostate cancer risk, grade, and stage among 400 Finnish male smokers using a case–control study design. Following genotyping of 206 patients and 196 healthy controls, our results do not support the role of NAT1*10 in relation to prostate cancer risk (OR = 1.28; 95% CI, 0.66–2.47), aggressive disease (OR = 0.58; 95% CI, 0.13–2.67), or advanced disease (OR = 1.19; 95% CI, 0.49–2.91).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abdel-Rahman SZ, El-Zein RA, Zwischenberger JB, Au WW (1998) Association of the NAT1*10 genotype with increased chromosome aberrations and higher lung cancer risk in cigarette smokers. Mutat Res 398(1–2):43–54

    CAS  PubMed  Google Scholar 

  • Agundez JA, Martinez C, Olivera M, Gallardo L, Ladero JM, Rosado C, Prados J, Rodriguez-Molina J, Resel L, Benitez J (1998) Expression in human prostate of drug- and carcinogen-metabolizing enzymes: association with prostate cancer risk. Br J Cancer 78(10):1361–1367

    CAS  PubMed  Google Scholar 

  • Albanes D, Heinonen OP, Huttunen JK, Taylor PR, Virtamo J, Edwards BK, Haapakoski J, Rautalahti M, Hartman AM, Palmgren J et al (1995) Effects of alpha-tocopherol and beta-carotene supplements on cancer incidence in the alpha-tocopherol beta-carotene cancer prevention study. Am J Clin Nutr 62(6 Suppl):1427S–1430S

    CAS  PubMed  Google Scholar 

  • Al-Buheissi SZ, Cole KJ, Hewer A, Kumar V, Bryan RL, Hudson DL, Patel HR, Nathan S, Miller RA, Phillips DH (2006) The expression of xenobiotic-metabolizing enzymes in human prostate and in prostate epithelial cells (PECs) derived from primary cultures. Prostate 66(8):876–885

    Article  CAS  PubMed  Google Scholar 

  • Ambrosone CB, Abrams SM, Gorlewska-Roberts K, Kadlubar FF (2007) Hair dye use, meat intake, and tobacco exposure and presence of carcinogen-DNA adducts in exfoliated breast ductal epithelial cells. Arch Biochem Biophys 464(2):169–175

    Article  CAS  PubMed  Google Scholar 

  • Badawi AF, Hirvonen A, Bell DA, Lang NP, Kadlubar FF (1995) Role of aromatic amine acetyltransferases, NAT1 and NAT2, in carcinogen-DNA adduct formation in the human urinary bladder. Cancer Res 55(22):5230–5237

    CAS  PubMed  Google Scholar 

  • Bell DA, Stephens EA, Castranio T, Umbach DM, Watson M, Deakin M, Elder J, Hendrickse C, Duncan H, Strange RC (1995a) Polyadenylation polymorphism in the acetyltransferase 1 gene (NAT1) increases risk of colorectal cancer. Cancer Res 55(16):3537–3542

    CAS  PubMed  Google Scholar 

  • Bell DA, Badawi AF, Lang NP, Ilett KF, Kadlubar FF, Hirvonen A (1995b) Polymorphism in the N-acetyltransferase 1 (NAT1) polyadenylation signal: association of NAT1*10 allele with higher N-acetylation activity in bladder and colon tissue. Cancer Res 55(22):5226–5229

    CAS  PubMed  Google Scholar 

  • Bruhn C, Brockmoller J, Cascorbi I, Roots I, Borchert HH (1999) Correlation between genotype and phenotype of the human arylamine N-acetyltransferase type 1 (NAT1). Biochem Pharmacol 58(11):1759–1764

    Article  CAS  PubMed  Google Scholar 

  • Chen J, Stampfer MJ, Hough HL, Garcia-Closas M, Willett WC, Hennekens CH, Kelsey KT, Hunter DJ (1998) A prospective study of N-acetyltransferase genotype, red meat intake, and risk of colorectal cancer. Cancer Res 58(15):3307–3311

    CAS  PubMed  Google Scholar 

  • Cross AJ, Peters U, Kirsh VA, Andriole GL, Reding D, Hayes RB, Sinha R (2005) A prospective study of meat and meat mutagens and prostate cancer risk. Cancer Res 65(24):11779–11784

    Article  CAS  PubMed  Google Scholar 

  • Fukutome K, Watanabe M, Shiraishi T, Murata M, Uemura H, Kubota Y, Kawamura J, Ito H, Yatani R (1999) N-acetyltransferase 1 genetic polymorphism influences the risk of prostate cancer development. Cancer Lett 136(1):83–87

    Article  CAS  PubMed  Google Scholar 

  • Gago-Dominguez M, Bell DA, Watson MA, Yuan JM, Castelao JE, Hein DW, Chan KK, Coetzee GA, Ross RK, Yu MC (2003) Permanent hair dyes and bladder cancer: risk modification by cytochrome P4501A2 and N-acetyltransferases 1 and 2. Carcinogenesis 24(3):483–489

    Article  CAS  PubMed  Google Scholar 

  • Gemignani F, Landi S, Szeszenia-Dabrowska N, Zaridze D, Lissowska J, Rudnai P, Fabianova E, Mates D, Foretova L, Janout V et al (2007) Development of lung cancer before the age of 50: the role of xenobiotic metabolizing genes. Carcinogenesis 28(6):1287–1293

    Article  CAS  PubMed  Google Scholar 

  • Giovannucci E, Liu Y, Platz EA, Stampfer MJ, Willett WC (2007) Risk factors for prostate cancer incidence and progression in the health professionals follow-up study. Int J Cancer 121(7):1571–1578

    Article  CAS  PubMed  Google Scholar 

  • Hein DW (2009) N-acetyltransferase SNPs: emerging concepts serve as a paradigm for understanding complexities of personalized medicine. Expert Opin Drug Metab Toxicol 5(4):353–366

    Article  CAS  PubMed  Google Scholar 

  • Hein DW, McQueen CA, Grant DM, Goodfellow GH, Kadlubar FF, Weber WW (2000) Pharmacogenetics of the arylamine N-acetyltransferases: a symposium in honor of Wendell W. Weber. Drug Metab Dispos 28(12):1425–1432

    CAS  PubMed  Google Scholar 

  • Hein DW, Leff MA, Ishibe N, Sinha R, Frazier HA, Doll MA, Xiao GH, Weinrich MC, Caporaso NE (2002) Association of prostate cancer with rapid N-acetyltransferase 1 (NAT1*10) in combination with slow N-acetyltransferase 2 acetylator genotypes in a pilot case-control study. Environ Mol Mutagen 40(3):161–167

    Article  CAS  PubMed  Google Scholar 

  • Hein DW, Doll MA, Xiao GH, Feng Y (2003) Prostate expression of N-acetyltransferase 1 (NAT1) and 2 (NAT2) in rapid and slow acetylator congenic Syrian hamster. Pharmacogenetics 13(3):159–167

    Article  CAS  PubMed  Google Scholar 

  • Hein DW, Bendaly J, Neale JR, Doll MA (2008a) Systemic functional expression of N-acetyltransferase polymorphism in the F344 Nat2 congenic rat. Drug Metab Dispos 36(12):2452–2459

    Article  CAS  PubMed  Google Scholar 

  • Hein DW, Boukouvala S, Grant DM, Minchin RF, Sim E (2008b) Changes in consensus arylamine N-acetyltransferase gene nomenclature. Pharmacogenet Genomics 18(4):367–368

    Article  CAS  PubMed  Google Scholar 

  • Heinonen OP, Albanes D, Virtamo J, Taylor PR, Huttunen JK, Hartman AM, Haapakoski J, Malila N, Rautalahti M, Ripatti S et al (1998) Prostate cancer and supplementation with alpha-tocopherol and beta-carotene: incidence and mortality in a controlled trial. J Natl Cancer Inst 90(6):440–446

    Article  CAS  PubMed  Google Scholar 

  • Hickey K, Do KA, Green A (2001) Smoking and prostate cancer. Epidemiol Rev 23(1):115–125

    CAS  PubMed  Google Scholar 

  • Husain A, Zhang X, Doll MA, States JC, Barker DF, Hein DW (2007) Functional analysis of the human N-acetyltransferase 1 major promoter: quantitation of tissue expression and identification of critical sequence elements. Drug Metab Dispos 35(9):1649–1656

    Article  CAS  PubMed  Google Scholar 

  • Ishibe N, Sinha R, Hein DW, Kulldorff M, Strickland P, Fretland AJ, Chow WH, Kadlubar FF, Lang NP, Rothman N (2002) Genetic polymorphisms in heterocyclic amine metabolism and risk of colorectal adenomas. Pharmacogenetics 12(2):145–150

    Article  CAS  PubMed  Google Scholar 

  • Ito N, Shirai T, Tagawa Y, Nakamura A, Fukushima S (1988) Variation in tumor yield in the prostate and other target organs of the rat in response to varied dosage and duration of administration of 3, 2′-dimethyl-4-aminobiphenyl. Cancer Res 48(16):4629–4632

    CAS  PubMed  Google Scholar 

  • Jiang W, Feng Y, Hein DW (1999) Higher DNA adduct levels in urinary bladder and prostate of slow acetylator inbred rats administered 3, 2′-dimethyl-4-aminobiphenyl. Toxicol Appl Pharmacol 156(3):187–194

    Article  CAS  PubMed  Google Scholar 

  • Jiao L, Doll MA, Hein DW, Bondy ML, Hassan MM, Hixson JE, Abbruzzese JL, Li D (2007) Haplotype of N-acetyltransferase 1 and 2 and risk of pancreatic cancer. Cancer Epidemiol Biomarkers Prev 16(11):2379–2386

    Article  CAS  PubMed  Google Scholar 

  • John K, Ragavan N, Pratt MM, Singh PB, Al-Buheissi S, Matanhelia SS, Phillips DH, Poirier MC, Martin FL (2009) Quantification of phase I/II metabolizing enzyme gene expression and polycyclic aromatic hydrocarbon-DNA adduct levels in human prostate. Prostate 69(5):505–519

    Article  PubMed  Google Scholar 

  • Katayama S, Fiala E, Reddy BS, Rivenson A, Silverman J, Williams GM, Weisburger JH (1982) Prostate adenocarcinoma in rats: induction by 3, 2′-dimethyl-4-aminobiphenyl. J Natl Cancer Inst 68(5):867–873

    CAS  PubMed  Google Scholar 

  • Katoh T, Inatomi H, Yang M, Kawamoto T, Matsumoto T, Bell DA (1999) Arylamine N-acetyltransferase 1 (NAT1) and 2 (NAT2) genes and risk of urothelial transitional cell carcinoma among Japanese. Pharmacogenetics 9(3):401–404

    Article  CAS  PubMed  Google Scholar 

  • Keating GA, Bogen KT (2004) Estimates of heterocyclic amine intake in the US population. J Chromatogr B Analyt Technol Biomed Life Sci 802(1):127–133

    Article  CAS  PubMed  Google Scholar 

  • Kilfoy BA, Zheng T, Lan Q, Han X, Holford T, Hein DW, Qin Q, Leaderer B, Morton LM, Yeager M, Boyle P, Zhao P, Chanock S, Rothman N, Zhang Y (2010) Genetic variation in N-acetyltransferases 1 and 2, cigarette smoking, and risk of non-Hodgkin lymphoma. Cancer Causes Control 21:127–133

    Article  PubMed  Google Scholar 

  • Kohno H, Suzuki R, Sugie S, Tsuda H, Tanaka T (2005) Dietary supplementation with silymarin inhibits 3, 2′-dimethyl-4-aminobiphenyl-induced prostate carcinogenesis in male F344 rats. Clin Cancer Res 11(13):4962–4967

    Article  CAS  PubMed  Google Scholar 

  • Koutros S, Cross AJ, Sandler DP, Hoppin JA, Ma X, Zheng T, Alavanja MC, Sinha R (2008) Meat and meat mutagens and risk of prostate cancer in the agricultural health study. Cancer Epidemiol Biomarkers Prev 17(1):80–87

    Article  CAS  PubMed  Google Scholar 

  • Lawson T, Kolar C (2002) Human prostate epithelial cells metabolize chemicals of dietary origin to mutagens. Cancer Lett 175(2):141–146

    Article  CAS  PubMed  Google Scholar 

  • Li DH, Jiao L, Li YN, Doll MA, Hein DW, Bondy ML, Evans DB, Wolff RA, Lenzi R, Pisters PW, Abbruzzese JL, Hassan MM (2006) Polymorphisms of cytochrome P4501A2 and N-acetyltransferase genes, smoking, and risk of pancreatic cancer. Carcinogenesis 27(1):103–111

    Article  PubMed  Google Scholar 

  • Lilla C, Verla-Tebit E, Risch A, Jager B, Hoffmeister M, Brenner H, Chang-Claude J (2006) Effect of NAT1 and NAT2 genetic polymorphisms on colorectal cancer risk associated with exposure to tobacco smoke and meat consumption. Cancer Epidemiol Biomarkers Prev 15(1):99–107

    Article  CAS  PubMed  Google Scholar 

  • Manabe S, Tohyama K, Wada O, Aramaki T (1991) Detection of a carcinogen, 2-amino-1-methyl-6-phenylimidazo[4, 5-b]pyridine (PhIP), in cigarette smoke condensate. Carcinogenesis 12(10):1945–1947

    Article  CAS  PubMed  Google Scholar 

  • Manabe S, Kurihara N, Wada O, Izumikawa S, Asakuno K, Morita M (1993) Detection of a carcinogen, 2-amino-1-methyl-6-phenylimidazo [4, 5-b]pyridine, in airborne particles and diesel-exhaust particles. Environ Pollut 80(3):281–286

    Article  CAS  PubMed  Google Scholar 

  • Millikan RC, Pittman GS, Newman B, Tse CK, Selmin O, Rockhill B, Savitz D, Moorman PG, Bell DA (1998) Cigarette smoking, N-acetyltransferases 1 and 2, and breast cancer risk. Cancer Epidemiol Biomarkers Prev 7(5):371–378

    CAS  PubMed  Google Scholar 

  • Morton LM, Schenk M, Hein DW, Davis S, Zahm SH, Cozen W, Cerhan JR, Hartge P, Welch R, Chanock SJ, Rothman N, Wang SS (2006) Genetic variation in N-acetyltransferase 1 (NAT1) and 2 (NAT2) and risk of non-Hodgkin lymphoma. Pharmacogenet Genomics 16(8):537–545

    Article  CAS  PubMed  Google Scholar 

  • Morton LM, Bernstein L, Wang SS, Hein DW, Rothman N, Colt JS, Davis S, Cerhan JR, Severson RK, Welch R, Hartge P, Zahm SH (2007) Hair dye use, genetic variation in N-acetyltransferase 1 (NAT1) and 2 (NAT2), and risk of non-Hodgkin lymphoma. Carcinogenesis 28(8):1759–1764

    Article  CAS  PubMed  Google Scholar 

  • National Toxicology Program (2005) Report on Carcinogenesis, Eleventh Edition, U.S. Department of Health and Human Services, Public Health Service, Research Triangle Park, NC

  • Purewal M, Fretland AJ, Schut HA, Hein DW, Wargovich MJ (2000) Association between acetylator genotype and 2-amino-1-methyl-6-phenylimidazo[4, 5-b]pyridine (PhIP) DNA adduct formation in colon and prostate of inbred Fischer 344 and Wistar Kyoto rats. Cancer Lett 149(1–2):53–60

    Article  CAS  PubMed  Google Scholar 

  • Rovito PM Jr, Morse PD, Spinek K, Newman N, Jones RF, Wang CY, Haas GP (2005) Heterocyclic amines and genotype of N-acetyltransferases as risk factors for prostate cancer. Prostate Cancer Prostatic Dis 8(1):69–74

    Article  CAS  PubMed  Google Scholar 

  • Sanderson S, Salanti G, Higgins J (2007) Joint effects of the N-acetyltransferase 1 and 2 (NAT1 and NAT2) genes and smoking on bladder carcinogenesis: a literature-based systematic HuGE review and evidence synthesis. Am J Epidemiol 166(7):741–751

    Article  PubMed  Google Scholar 

  • Shin A, Shrubsole MJ, Rice JM, Cai Q, Doll MA, Long J, Smalley WE, Shyr Y, Sinha R, Ness RM, Hein DW, Zheng W (2008) Meat intake, heterocyclic amine exposure, and metabolizing enzyme polymorphisms in relation to colorectal polyp risk. Cancer Epidemiol Biomarkers Prev 17(2):320–329

    Article  CAS  PubMed  Google Scholar 

  • Shirai T, Sano M, Tamano S, Takahashi S, Hirose M, Futakuchi M, Hasegawa R, Imaida K, Matsumoto K, Wakabayashi K, Sugimura T, Ito N (1997) The prostate: a target for carcinogenicity of 2-amino-1-methyl-6-phenylimidazo[4, 5-b]pyridine (PhIP) derived from cooked foods. Cancer Res 57(2):195–198

    CAS  PubMed  Google Scholar 

  • Sinha R, Park Y, Graubard BI, Leitzmann MF, Hollenbeck A, Schatzkin A, Cross AJ (2009) Meat and meat-related compounds and risk of prostate cancer in a large prospective cohort study in the United States. Am J Epidemiol 170(9):1165–1177

    Article  PubMed  Google Scholar 

  • Suzuki H, Morris JS, Li Y, Doll MA, Hein DW, Liu J, Jiao L, Hassan MM, Day RS, Bondy ML, Abbruzzese JL, Li D (2008) Interaction of the cytochrome P4501A2, SULT1A1 and NAT gene polymorphisms with smoking and dietary mutagen intake in modification of the risk of pancreatic cancer. Carcinogenesis 29(6):1184–1191

    Article  CAS  PubMed  Google Scholar 

  • Taylor JA, Umbach DM, Stephens E, Castranio T, Paulson D, Robertson C, Mohler JL, Bell DA (1998) The role of N-acetylation polymorphisms in smoking-associated bladder cancer: evidence of a gene-gene-exposure three-way interaction. Cancer Res 58(16):3603–3610

    CAS  PubMed  Google Scholar 

  • Wang CY, Debiec-Rychter M, Schut HA, Morse P, Jones RF, Archer C, King CM, Haas GP (1999) N-Acetyltransferase expression and DNA binding of N-hydroxyheterocyclic amines in human prostate epithelium. Carcinogenesis 20(8):1591–1595

    Article  CAS  PubMed  Google Scholar 

  • Watters JL, Park Y, Hollenbeck A, Schatzkin A, Albanes D (2009) Cigarette smoking and prostate cancer in a prospective US cohort study. Cancer Epidemiol Biomarkers Prev 18(9):2427–2435

    Article  CAS  PubMed  Google Scholar 

  • Wikman H, Thiel S, Jager B, Schmezer P, Spiegelhalder B, Edler L, Dienemann H, Kayser K, Schulz V, Drings P, Bartsch H, Risch A (2001) Relevance of N-acetyltransferase 1 and 2 (NAT1, NAT2) genetic polymorphisms in non-small cell lung cancer susceptibility. Pharmacogenetics 11(2):157–168

    Article  CAS  PubMed  Google Scholar 

  • Williams JA, Martin FL, Muir GH, Hewer A, Grover PL, Phillips DH (2000) Metabolic activation of carcinogens and expression of various cytochromes P450 in human prostate tissue. Carcinogenesis 21(9):1683–1689

    Article  CAS  PubMed  Google Scholar 

  • Zheng W, Deitz AC, Campbell DR, Wen WQ, Cerhan JR, Sellers TA, Folsom AR, Hein DW (1999) N-acetyltransferase 1 genetic polymorphism, cigarette smoking, well-done meat intake, and breast cancer risk. Cancer Epidemiol Biomarkers Prev 8(3):233–239

    CAS  PubMed  Google Scholar 

  • Zu K, Giovannucci E (2009) Smoking and aggressive prostate cancer: a review of the epidemiologic evidence. Cancer Causes Control [Epub June 27, 2009]

Download references

Acknowledgments

We thank Rama Modali and Kirsten Taylor for technical support and Mike Barrett, Kirk Snyder, and Tan Carly for data management. This study was supported in part by Public Health Service contracts NOl CN45165 and 45035 from the National Cancer Institute, United States Department of Health and Human Services.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to LaCreis R. Kidd.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kidd, L.R., Hein, D.W., Woodson, K. et al. Lack of Association of the N-acetyltransferase NAT1*10 Allele with Prostate Cancer Incidence, Grade, or Stage Among Smokers in Finland. Biochem Genet 49, 73–82 (2011). https://doi.org/10.1007/s10528-010-9386-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10528-010-9386-4

Keywords

Navigation