Skip to main content
Log in

Microbial metabolomics: past, present and future methodologies

  • Review
  • Published:
Biotechnology Letters Aims and scope Submit manuscript

Abstract

Microbial metabolomics has received much attention in recent years mainly because it supports and complements a wide range of microbial research areas from new drug discovery efforts to metabolic engineering. Broadly, the term metabolomics refers to the comprehensive (qualitative and quantitative) analysis of the complete set of all low molecular weight metabolites present in and around growing cells at a given time during their growth or production cycle. This review focuses on the past, current and future development of various experimental protocols in the rapid developing area of metabolomics in the ongoing quest to reliably quantify microbial metabolites formed under defined physiological conditions. These developments range from rapid sample collection, instant quenching of microbial metabolic activity, extraction of the relevant intracellular metabolites as well as quantification of these metabolites using enzyme based and or modern high tech hyphenated analytical protocols, mainly chromatographic techniques coupled to mass spectrometry (LC-MSn, GC-MSn, CE-MSn), where n indicates the number of tandem mass spectrometry, and nuclear magnetic resonance spectroscopy (NMR).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

Metabolomics:

Quantification of the total metabolites complement inside and outside a cell under defined growth conditions

Exometabolome:

Total metabolites excreted outside the cell (culture supernatant)

Endometabolome:

Total metabolites located inside the cell (Intracellularly)

Footprinting:

Qualitative analysis of exometabolome

Fingerprinting:

Qualitative analysis of endometabolome

Target analysis:

Quantitative analysis of known pre-defined metabolites concentrations

Quenching:

Instantaneous arrest of endogenous metabolic activity

GC-MS:

Gas chromatography coupled to mass spectrometry

LC-ESI-MS:

Liquid chromatography coupled to electrospray ionisation mass spectrometry

Q-TOF:

uattro Time of light

FT-ICR:

Fourier transform-ion cyclotron resonance

CE-MS:

Capillary electrophoresis coupled to mass spectrometry

Metabolite turnover rate:

The inverse of the metabolite pool size to metabolite flux ratio

References

  • Aida K, Chibata I, Nakayama K, Takinami K, Yamada H (1986) Biotechnology of amino acid production. Elsevier, Amsterdam

    Google Scholar 

  • Al Zaid Siddiquee K, Arauzo-Bravo MJ, Shimizu K (2004) Metabolic flux analysis of pykF gene knockout Escherichia coli based on 13C-labeling experiments together with measurements of enzyme activities and intracellular metabolite concentrations. Appl Microbiol Biotechnol 63:407–417

    Article  CAS  PubMed  Google Scholar 

  • Bagnara AS, Finch LR (1972) Quantitative extraction and estimation of intracellular nucleoside triphosphates of Escherichia coli. Anal Biochem 45:24–34

    Article  CAS  PubMed  Google Scholar 

  • Bailey JE (1991) Toward a science of metabolic engineering. Science 252:1668–1675

    Article  CAS  PubMed  Google Scholar 

  • Bergmeyer HC, Bergmeyer J, Grass M (1985) Methods in enzymatic analysis, 3rd edn. Verlag-Chemie, Weinheim

    Google Scholar 

  • Bhattacharya M, Fuhrman L, Ingram A, Nickerson KW, Conway T (1995) Single-run separation and detection of multiple metabolic intermediates by anion-exchange high-performance liquid chromatography and application to cell pool extracts prepared from Escherichia coli. Anal Biochem 232:98–106

    Article  CAS  PubMed  Google Scholar 

  • Bino RJ, Hall RD, Fiehn O, Kopka J, Saito K, Draper J, Nikolau BJ, Mendes P, Roessner-Tunali U, Beale MH, Trethewey RN, Lange BM, Wurtele ES, Sumner LW (2004) Potential of metabolomics as a functional genomics tool. Trends Plant Sci 9:418–425

    Article  CAS  PubMed  Google Scholar 

  • Brown SC, Kruppa G, Dasseux JL (2005) Metabolomics applications of FT-ICR mass spectrometry. Mass Spectrom Rev 24:223–231

    Article  CAS  PubMed  Google Scholar 

  • Buchholz A, Takors R, Wandrey C (2001) Quantification of intracellular metabolites in Escherichia coli K12 using liquid chromatographic-electrospray ionization tandem mass spectrometric techniques. Anal Biochem 295:129–137

    Article  CAS  PubMed  Google Scholar 

  • Buchholz A, Hurlebaus J, Wandrey C, Takors R (2002) Metabolomics: quantification of intracellular metabolite dynamics. Biomol Eng 19:5–15

    Article  CAS  PubMed  Google Scholar 

  • Buziol S, Bashir I, Baumeister A, Claaßen W, Noisommit-Rizzi N, Mailinger W, Reuss M (2002) New bioreactor-coupled rapid stopped-flow sampling technique for measurements of metabolite dynamics on a subsecond time scale. Biotechnol Bioeng 80:632–636

    Article  CAS  PubMed  Google Scholar 

  • Castrillo JI, Hayes A, Mohammed S, Gaskell SJ, Oliver SG (2003) An optimized protocol for metabolome analysis in yeast using direct infusion electrospray mass spectrometry. Phytochemistry 62:929–937

    Article  CAS  PubMed  Google Scholar 

  • Cech NB, Enke CG (2001) Practical implications of some recent studies in electrospray ionization fundamentals. Mass Spectrom Rev 20:362–387

    Article  CAS  PubMed  Google Scholar 

  • Chassagnole C, Noisommit-Rizzi N, Schmid JW, Mauch K, Reuss M (2002) Dynamic modeling of the central carbon metabolism of Escherichia coli. Biotechnol Bioeng 79:53–73

    Article  CAS  PubMed  Google Scholar 

  • de Koning W, van Dam K (1992) A method for the determinations of changes of glycolytic metabolites in yeast on a sub second time scale using extraction at neutral pH. Anal Biochem 204:118–123

    Article  PubMed  Google Scholar 

  • Diderich JA, Schepper M, van Hoek P, Luttik MAH, van Dijken JP, Pronk JT, Klaasen P, Boelens MJ, Teixeria de Mattos MJ, van Dam K, Kruckeburg AL (1999) Glucose uptake kinetics and transcription of HXT genes in chemostat cultures of Saccharomyces cerevisiae. J Biol Chem 274:15350–15359

    Article  CAS  PubMed  Google Scholar 

  • Dunn WB, Ellis DI (2005) Metabolomics: current analytical platforms and methodologies. Trends Analyt Chem 24:285–294

    Article  CAS  Google Scholar 

  • Dunn WB, Bailey NJC, Johnson HE (2005) Measuring the metabolome: current analytical technologies. Analyst 130:606–625

    Article  CAS  PubMed  Google Scholar 

  • Domon B, Aebersold R (2006) Mass spectrometry and protein analysis. Science 312:212–217

    Article  CAS  PubMed  Google Scholar 

  • Edwards E, Thomas-Oates J (2005) Hyphenating liquid phase separation techniques with mass spectrometry: on-line or off-line. Analyst 130:13–17

    Article  CAS  PubMed  Google Scholar 

  • Edwards JL, Chisolm CN, Shackman JG, Kennedy RT (2006) Negative mode sheathless capillary electrophoresis electrospray ionization-mass spectrometry for metabolite analysis of prokaryotes. J Chromatogr A 1106:80–88

    Article  CAS  PubMed  Google Scholar 

  • Farre EM, Tiessen A, Roessner U, Geigenberger P, Trethewey RN, Willmitzer L (2001) Analysis of the compartmentation of glycolytic intermediates, nucleotides, sugars, organic acids, amino acids, and sugar alcohols in potato tubers using a nonaqueous fractionation method. Plant Physiol 127:685–700

    Article  CAS  PubMed  Google Scholar 

  • Fernie AR, Trethewey RN, Krotzky AJ, Willmitzer L (2004) Metabolite profiling: from diagnostics to systems biology. Nat Rev Mol Cell Biol 5:763–769

    Article  CAS  PubMed  Google Scholar 

  • Fiehn O, Kopka J, Dormann P, Altmann T, Trethewey RN, Willmitzer L (2000) Metabolite profiling for plant functional genomics. Nat Biotechnol 18:1157–1161

    Article  CAS  PubMed  Google Scholar 

  • Fiehn O (2006) Metabolite profiling in Arabidopsis. Methods Mol Biol 323:439–447

    CAS  PubMed  Google Scholar 

  • Gancedo JM, Gancedo C (1973) Concentrations of intermediary metabolites in yeast. Biochimie 55:205–211

    CAS  PubMed  Google Scholar 

  • Glinski M, Weckwerth W (2006) The role of mass spectrometry in plant systems biology. Mass Spectrom Rev 25:173–214

    Article  CAS  PubMed  Google Scholar 

  • Goodacre R (2005) Metabolomics – the way forward. Metabolomics 1:1–2

    Article  CAS  Google Scholar 

  • Gonzalez B, Francois J, Renaud M (1997) A rapid and reliable method for metabolite extraction in yeast using boiling buffered ethanol. Yeast 13:1347–1356

    Article  CAS  PubMed  Google Scholar 

  • Griffin JL (2006) The Cinderella story of metabolic profiling: does metabolomics get to go to the functional genomics ball? Philos Trans R Soc Lond B Biol Sci 361:147–161

    Article  PubMed  CAS  Google Scholar 

  • Hajjaj H, Blanc PJ, Goma G, Francois J (1998) Sampling techniques and comparative extraction procedures for quantitative determination of intra- and extracellular metabolites in filamentous fungi. FEMS Microbiol Lett 164:195–200

    Article  CAS  Google Scholar 

  • Harrison DE, Maitra PK (1969) Control of respiration and metabolism in growing Klebsiella aerogenes. The role of adenine nucleotides. Biochem J 112:647–656

    CAS  PubMed  Google Scholar 

  • Holms H (1996) Flux analysis and control of the central metabolic pathways in Escherichia coli. FEMS Microbiol Rev 19:85–116

    Article  CAS  PubMed  Google Scholar 

  • Hoque MA, Ushiyama H, Tomita M, Shimizu K (2005) Dynamic responses of the intracellular metabolite concentrations of the wild type and pykA mutant Escherichia coli against pulse addition of glucose or NH3 under those limiting continuous cultures. Biochem Eng J 26:38–49

    Article  CAS  Google Scholar 

  • Jaki BU, Franzblau SG, Cho SH, Pauli GF (2006) Development of an extraction method for mycobacterial metabolome analysis. J Pharm Biomed Anal 41:196–200

    Article  CAS  PubMed  Google Scholar 

  • Jensen NB, Jokumsen KV, Villadsen J (1999) Determination of the phosphorylated sugars of the Embden-Meyerhoff-Parnas pathway in Lactococcus lactis using a fast sampling technique and solid phase extraction. Biotechnol Bioeng 63:356–362

    Article  CAS  PubMed  Google Scholar 

  • Jewett MC, Hofmann G, Nielsen J (2006) Fungal metabolite analysis in genomics and phenomics. Curr Opin Biotechnol 17:191–197

    CAS  PubMed  Google Scholar 

  • Kabir MM, Ho PY, Shimizu K (2005) Effect of ldhA gene deletion on the metabolism of Escherichia coli based on gene expression, enzyme activities, intracellular metabolite concentrations, and metabolic flux distribution. Biochem Eng J 26:1–-11

    Article  CAS  Google Scholar 

  • Kaderbhai NN, Broadhurst DI, Ellis DI, Goodacre R, Kell DB (2003) Functional genomics via metabolic footprinting: monitoring metabolite secretion by Escherichia coli tryptophan metabolism mutants using FT-IR and direct injection electrospray mass spectrometry. Comp Funct Genom 4:376–391

    Article  CAS  Google Scholar 

  • Kammerer B, Kahlich R, Laufer S, Li SM, Heide L, Gleiter CH (2004) Mass spectrometric pathway monitoring of secondary metabolites: systematic analysis of culture extracts of Streptomyces species. Anal Biochem 335:17–29

    Article  CAS  PubMed  Google Scholar 

  • Kayser A, Weber J, Hecht V, Rinas U (2005) Metabolic flux analysis of Escherichia coli in glucose-limited continuous culture. I. Growth-rate-dependent metabolic efficiency at steady state. Microbiology 151:693–706

    Article  CAS  PubMed  Google Scholar 

  • Kell DB, Brown M, Davey HM, Dunn WB, Spasic I, Oliver SG (2005) Metabolic footprinting and systems biology: the medium is the message. Nat Rev Microbiol 3:557–565

    Article  CAS  PubMed  Google Scholar 

  • Kell DB (2006) Theodor Bucher Lecture. Metabolomics, modelling and machine learning in systems biology - towards an understanding of the languages of cells. Delivered on 3 July 2005 at the 30th FEBS Congress and the 9th IUBMB conference in Budapest. FEBS J 273:873–894

    Article  CAS  PubMed  Google Scholar 

  • Kitano H (2002) Systems biology: a brief overview. Science 295:1662–1664

    Article  CAS  PubMed  Google Scholar 

  • Koek MM, Muilwijk B, van der Werf MJ, Hankemeier T (2006) Microbial metabolomics with gas chromatography/mass spectrometry. Anal Chem 78:1272–1281

    Article  CAS  PubMed  Google Scholar 

  • Kummel A, Panke S, Heinemann M (2006) Putative regulatory sites unraveled by network-embedded thermodynamic analysis of metabolome data. Mol Syst Biol 2:0034E1–0034E10

    Article  CAS  Google Scholar 

  • Lange HC, Eman M, van Zuijlen G, Visser D, van Dam JC, Frank J, de Mattos MJ, Heijnen JJ (2001) Improved rapid sampling for in vivo kinetics of intracellular metabolites in Saccharomyces cerevisiae. Biotechnol Bioeng 75:406–415

    Article  CAS  PubMed  Google Scholar 

  • Lee SY, Lee DY, Kim TY (2005) Systems biotechnology for strain improvement. Trends Biotechnol 23:349–358

    Article  CAS  PubMed  Google Scholar 

  • Lilius E, Multanen V, Toivonen V (1979) Quantitative extraction and estimation of intracellular nicotinamide nucleotides of Escherichia coli. Anal Biochem 99:22–27

    Article  CAS  PubMed  Google Scholar 

  • Maharjan RP, Ferenci T (2003) Global metabolite analysis: the influence of extraction methodology on metabolome profiles of Escherichia coli. Anal Biochem 313:145–154

    Article  PubMed  Google Scholar 

  • Mashego MR, van Gulik WM, Vinke JL, Heijnen JJ (2003) Critical evaluation of sampling techniques for residual glucose determination in carbon-limited chemostat culture of Saccharomyces cerevisiae. Biotechnol Bioeng 83:395–399

    Article  CAS  PubMed  Google Scholar 

  • Mashego MR, Wu L, Van Dam JC, Ras C, Vinke JL, Van Winden WA, Van Gulik WM, Heijnen JJ (2004) MIRACLE: mass isotopomer ratio analysis of U–13C-labeled extracts. A new method for accurate quantification of changes in concentrations of intracellular metabolites. Biotechnol Bioeng 85:620–628

    Article  CAS  PubMed  Google Scholar 

  • Mashego MR, van Gulik WM, Vinke JL, Visser D, Heijnen JJ (2006a) In vivo kinetics with rapid perturbation experiments in Saccharomyces cerevisiae using a second-generation BioScope. Metab Eng 8:370–383

    Article  CAS  Google Scholar 

  • Mashego MR, van Gulik WM, Heijnen JJ (2006b) Metabolome dynamic responses of Saccharomyces cerevisiae on simultaneous rapid perturbations in external electron acceptor and electron donor. FEMS Yeast Res. DOI:10.1111/j.1567–1364.2006.00144.x

  • Nasution U, van Gulik WM, Kleijn RJ, van Winden WA, Proell A, Heijnen JJ (2006) Measurement of intracellular metabolites of primary metabolism and adenine nucleotides in chemostat cultivated Penicillium chrysogenum. Biotechnol Bioeng 94:159–166

    Article  CAS  PubMed  Google Scholar 

  • Nielsen J (2001) Metabolic engineering. Appl Microbiol Biotechnol 55:263–283

    Article  CAS  PubMed  Google Scholar 

  • Nielsen J, Oliver S (2005) The next wave in metabolome analysis. Trends Biotechnol 23:544–546

    Article  CAS  PubMed  Google Scholar 

  • Oldiges M, Kunze M, Degenring D, Sprenger GA, Takors R (2004) Stimulation, monitoring, and analysis of pathway dynamics by metabolic profiling in the aromatic amino acid pathway. Biotechnol Prog 20:1623–1633

    Article  CAS  PubMed  Google Scholar 

  • Oliver SG, Winson MK, Kell DB, Baganz F (1998) Systematic functional analysis of the yeast genome. Trends Biotechnol 16:373–378

    Article  CAS  PubMed  Google Scholar 

  • Postma E, Scheffers WA, van Dijken JP (1989) Kinetics of growth and glucose transport in glucose-limited chemostat cultures of Saccharomyces cerevisiae CBS 8066. Yeast 5:159–165

    Article  CAS  PubMed  Google Scholar 

  • Ramautar R, Demirci A, de Jong GJ (2006) Capillary electrophoresis in metabolomics. Trends Analyt Chem 25:455–466

    Article  CAS  Google Scholar 

  • Ruijter GJG, Visser J (1996) Determination of intermediary metabolites in Aspergillus niger. J Microbiol Methods 25:295–302

    Article  CAS  Google Scholar 

  • Sáez MJ, Lagunas R (1976) Determination of intermediary metabolites in yeast. Critical examination of the effect of sampling conditions and recommendations for obtaining true levels. Mol Cell Biochem 13:73–78

    Article  PubMed  Google Scholar 

  • Schaefer U, Boos W, Takors R, Weuster-Botz D (1999) Automated sampling device for monitoring intracellular metabolite dynamics. Anal Biochem 270:88–96

    Article  CAS  PubMed  Google Scholar 

  • Shi G (2002) Application of co-eluting structural analog internal standards for expanded linear dynamic range in liquid chromatography/electrospray mass spectrometry. Rapid Commun Mass Spectrom 17:202–206

    Article  CAS  Google Scholar 

  • Soga T, Ueno Y, Naraoka H, Ohashi Y, Tomita M, Nishioka T (2002) Simultaneous determination of anionic intermediates for Bacillus subtilis metabolic pathways by capillary electrophoresis electrospray ionization mass spectrometry. Anal Chem 74:2233–2239

    Article  CAS  PubMed  Google Scholar 

  • Soga T, Ohashi Y, Ueno Y, Naraoka H, Tomita M, Nishioka T (2003) Quantitative metabolome analysis using capillary electrophoresis mass spectrometry. J Proteome Res 2:488–494

    Article  CAS  PubMed  Google Scholar 

  • Stephanopoulos G, Alper H, Moxley J (2004) Exploiting biological complexity for strain improvement through systems biology. Nat Biotechnol 22:1261–1267

    Article  CAS  PubMed  Google Scholar 

  • Sumner LW, Mendes P, Dixon RA (2003) Plant metabolomics: large-scale phytochemistry in the functional genomics era. Phytochemistry 62:817–836

    Article  CAS  PubMed  Google Scholar 

  • Theobald U, Mailinger W, Reuss M, Rizzi M (1993) In vivo analysis of glucose-induced fast changes in yeast adenine nucleotide pool applying a rapid sampling technique. Anal Biochem 214:31–37

    Article  CAS  PubMed  Google Scholar 

  • Theobald U, Mailinger W, Baltes M, Reuss M, Rizzi M (1997) In vivo analysis of metabolic dynamics in Saccharomyces cerevisiae: I. Experimental observations. Biotechnol Bioeng 55:305–316

    Article  CAS  PubMed  Google Scholar 

  • Tomer KB (2001) Separations combined with Mass Spectrometry. Chem Rev 101:297–328

    Article  CAS  PubMed  Google Scholar 

  • Tweeddale H, Notley-McRobb L, Ferenci T (1998) Effect of slow growth on metabolism of Escherichia coli, as revealed by global metabolite pool (“metabolome”) analysis. J Bacteriol 180:5109–5116

    CAS  PubMed  Google Scholar 

  • van Dam JC, Eman MR, Frank J, Lange HC, van Dedem GWK, Heijnen JJ (2002) Analysis of glycolytic metabolites in Saccharomyces cerevisiae using anion exchange chromatography and electrospray ionisation with tandem mass spectrometric detection. Anal Chim Acta 460:209–218

    Article  Google Scholar 

  • van der Werf MJ, Jellema RH, Hankemeier T (2005) Microbial metabolomics: replacing trial-and-error by the unbiased selection and ranking of targets. J Ind Microbiol Biotechnol 32:234–252

    Article  PubMed  CAS  Google Scholar 

  • Van Hoek WPM, Diderich JA, Schepper M, Luttik MAH, van Dijken JP, Pronk JT, Klaasen P, Boelens MJ, Teixeria de Mattos MJ, van Dam K, Kruckeburg AL (1999) Glucose uptake kinetics and transcription of HXT Genes in chemostat cultures of Saccharomyces cerevisiae. J Biol Chem 64:4226–4233

    Google Scholar 

  • van Winden WA, van Dam JC, Ras C, Kleijn RJ, Vinke JL, van Gulik WM, Heijnen JJ (2005) Metabolic-flux analysis of Saccharomyces cerevisiae CEN.PK113-7D based on mass isotopomer measurements of 13C-labeled primary metabolites. FEMS Yeast Res 5:559–568

    Article  PubMed  CAS  Google Scholar 

  • Verduyn C, Postma E, Scheffers WA, Van Dijken JP (1992) Effect of benzoic acid on metabolic fluxes in yeasts: a continuous culture study on the regulation of respiration and alcoholic fermentation. Yeast 8:501–517

    Article  CAS  PubMed  Google Scholar 

  • Villas-Bôas SG, Hojer-Pedersen J, Akesson M, Smedsgaard J, Nielsen J (2005a) Global metabolite analysis of yeast: evaluation of sample preparation methods. Yeast 22:1155–1169

    Article  CAS  Google Scholar 

  • Villas-Bôas SG, Mas S, Akesson M, Smedsgaard J, Nielsen J (2005b) Mass spectrometry in metabolome analysis. Mass Spectrom Rev 24:613–646

    Article  CAS  Google Scholar 

  • Villas-Bôas SG, Noel S, Lane GA, Attwood G, Cookson A (2006) Extracellular metabolomics: a metabolic footprinting approach to assess fiber degradation in complex media. Anal Biochem 349:297–305

    Article  PubMed  CAS  Google Scholar 

  • Visser D, van Zuylen GA., van Dam JC, Oudshoorn A, Eman MR, Ras C, van Gulik WM, Frank J, van Dedem GW, Heijnen JJ (2002) Rapid sampling for analysis of in vivo kinetics using the BioScope: a system for continuous pulse experiments. Biotechnol Bioeng 79:674–681

    Article  CAS  PubMed  Google Scholar 

  • Weber J, Kayser A, Rinas U (2005) Metabolic flux analysis of Escherichia coli in glucose-limited continuous culture. II. Dynamic response to famine and feast, activation of the methylglyoxal pathway and oscillatory behaviour. Microbiology 151:707–716

    Article  CAS  PubMed  Google Scholar 

  • Weibel KE, Mor JR, Fiechter A (1974) Rapid sampling of yeast cells and automated assays of adenylate, citrate, pyruvate and glucose-6-phosphate pools. Anal Biochem 58:208–216

    Article  CAS  PubMed  Google Scholar 

  • Wendisch VF, Bott M, Kalinowski J, Oldiges M, Wiechert W (2006a) Emerging Corynebacterium glutamicum systems biology. J Biotechnol 124:74–92

    Article  CAS  Google Scholar 

  • Wendisch VF, Bott M, Eikmanns BJ (2006b) Metabolic engineering of Escherichia coli and Corynebacterium glutamicum for biotechnological production of organic acids and amino acids. Curr Opin Microbiol 9:268–274

    Article  CAS  Google Scholar 

  • Weuster-Botz D (1997) Sampling tube device for monitoring intracellular metabolite dynamics. Anal Biochem 246:225–233

    Article  CAS  PubMed  Google Scholar 

  • Wittmann C, Krömer JO, Kiefer P, Binz T, Heinzle E (2004) Impact of the cold shock phenomenon on quantification of intracellular metabolites in bacteria. Anal Biochem 327:135–139

    Article  CAS  PubMed  Google Scholar 

  • Weckwerth W, Wenzel K, Fiehn O (2004) Process for the integrated extraction, identification and quantification of metabolites, proteins and RNA to reveal their co-regulation in biochemical networks. Proteomics 4:78–83

    Article  CAS  PubMed  Google Scholar 

  • Wu L, Mashego MR, van Dam JC, Proell AM, Vinke JL, Ras C, van Winden WA, van Gulik WM, Heijnen JJ (2005) Quantitative analysis of the microbial metabolome by isotope dilution mass spectrometry using uniformly 13C-labeled cell extracts as internal standards. Anal Biochem 336:164–171

    Article  CAS  PubMed  Google Scholar 

  • Wunschel D, Fox KF, Fox A, Nagpal ML, Kim K, Stewart GC, Shahgholi M (1997) Quantitative analysis of neutral and acidic sugars in whole bacterial cell hydrolysates using high-performance anion-exchange liquid chromatography-electrospray ionization tandem mass spectrometry. J Chromatogr A 776:205–219

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mlawule R. Mashego.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mashego, M.R., Rumbold, K., De Mey, M. et al. Microbial metabolomics: past, present and future methodologies. Biotechnol Lett 29, 1–16 (2007). https://doi.org/10.1007/s10529-006-9218-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10529-006-9218-0

Keywords

Navigation