Skip to main content
Log in

Flocculation protein structure and cell–cell adhesion mechanism in Saccharomyces cerevisiae

  • Review
  • Published:
Biotechnology Letters Aims and scope Submit manuscript

Abstract

Cell–cell adhesion occurs in a broad spectrum of biological processes, of which yeast flocculation is an area of interest for evolutionary scientists to brewers and winemakers. The flocculation mechanism is based on a lectin-carbohydrate interaction but is not yet fully understood, although the first model dates back to the 1950s. This review will update the current understanding of the complex mechanism behind yeast flocculation. Moreover, modern technologies to measure the forces involved in single carbohydrate-lectin interactions, are discussed. The Flo1 protein has been extensively described as the protein responsible for strong flocculation. Recently, more research has been directed to the detailed analysis of this flocculin. Due to the advances in the field of bioinformatics, more information about Flo1p could be obtained via structurally or functionally related proteins. Here, we review the current knowledge of the Flo1 protein, with a strong emphasis towards its structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Aikawa J (1995) Asparagine-linked glycosylation in yeast, Saccharomyces cerevisiae: basic mechanism of core glycosylation and effects on biochemical properties. Riken Rev 8:37–38

    CAS  Google Scholar 

  • Baillie GS, Douglas LJ (1999) Role of dimorphism in the development of Candida albicans biofilms. J Med Microbiol 48:671–679

    Article  PubMed  CAS  Google Scholar 

  • Baumgart T, Offenhausser A (2003) Polysaccharide-supported planar bilayer lipid model membranes. Langmuir 19:1730–1737

    Article  CAS  Google Scholar 

  • Bidard F, Bony M, Blondin B, Dequin S, Barre P (1995) The Saccharomyces cerevisiae FLO1 flocculation gene encodes for a cell surface protein. Yeast 11:809–822

    Article  PubMed  CAS  Google Scholar 

  • Bony M, Thines-Sempoux D, Barre P, Blondin B (1997) Localization and cell surface anchoring of the Saccharomyces cerevisiae flocculation protein Flo1p. J Bacteriol 179:4929–4936

    PubMed  CAS  Google Scholar 

  • Bony M, Barre P, Blondin B (1998) Distribution of the flocculation protein, flop, at the cell surface during yeast growth: the availability of flop determines the flocculation level. Yeast 14:25–35

    Article  PubMed  CAS  Google Scholar 

  • Bossier P, Goethals P, Rodrigues-Pousada C (1997) Constitutive flocculation in Saccharomyces cerevisiae through overexpression of the GTS1 gene, coding for a ‘Glo’-type Zn-finger-containing protein. Yeast 13:717–725

    Article  PubMed  CAS  Google Scholar 

  • Braus GH, Grundmann O, Bruckner S, Mosch HU (2003) Amino acid starvation and Gcn4p regulate adhesive growth and FLO11 gene expression in Saccharomyces cerevisiae. Mol Biol Cell 14:4272–4284

    Article  PubMed  CAS  Google Scholar 

  • Bucior I, Burger MM (2004) Carbohydrate–carbohydrate interactions in cell recognition. Curr Opin Struct Biol 14:631–637

    Article  PubMed  CAS  Google Scholar 

  • Bucior I, Scheuring S, Engel A, Burger MM (2004) Carbohydrate–carbohydrate interaction provides adhesion force and specificity for cellular recognition. J Cell Biol 165:529–537

    Article  PubMed  CAS  Google Scholar 

  • Bucior I, Burger MM, Fernàndez-Busquets X (2009) Carbohydrate–carbohydrate interactions. In: Gabius HJ (ed) The sugar code. Wiley-VCH Verlag & Co. KGaA, Weinheim, pp 347–362

    Google Scholar 

  • Caro LH, Tettelin H, Vossen JH, Ram AF, Van den Ende H, Klis FM (1997) In silicio identification of glycosyl-phosphatidylinositol-anchored plasma-membrane and cell wall proteins of Saccharomyces cerevisiae. Yeast 13:1477–1489

    Article  PubMed  CAS  Google Scholar 

  • Carvalho de Souza A, Ganchev DN, Snel MM, van der Eerden JP, Vliegenthart JF, Kamerling JP (2009) Adhesion forces in the self-recognition of oligosaccharide epitopes of the proteoglycan aggregation factor of the marine sponge Microciona prolifera. Glycoconj J 26:457–465

    Article  PubMed  CAS  Google Scholar 

  • Chen A, Moy VT (2000) Cross-linking of cell surface receptors enhances cooperativity of molecular adhesion. Biophys J 78:2814–2820

    Article  PubMed  CAS  Google Scholar 

  • Cormack BP, Ghori N, Falkow S (1999) An adhesin of the yeast pathogen Candida glabrata mediating adherence to human epithelial cells. Science 285:578–582

    Article  PubMed  CAS  Google Scholar 

  • Dammer U, Popescu O, Wagner P, Anselmetti D, Güntherodt HJ, Misevic GN (1995) Binding strength between cell adhesion proteoglycans measured by atomic force microscopy. Science 267:1173–1175

    Article  PubMed  CAS  Google Scholar 

  • De Groot PW, Hellingwerf KJ, Klis FM (2003) Genome-wide identification of fungal GPI proteins. Yeast 20:781–796

    Article  PubMed  CAS  Google Scholar 

  • De Nobel H, Lipke PN (1994) Is there a role for GPIs in yeast cell-wall assembly? Trends Cell Biol 4:42–45

    Article  PubMed  Google Scholar 

  • Dean N (1999) Asparagine-linked glycosylation in the yeast Golgi. Biochim Biophys Acta 1426:309–322

    PubMed  CAS  Google Scholar 

  • Dettmann W, Grandbois M, André S, Benoit M, Wehle AK, Kaltner H, Gabius HJ, Gaub HE (2000) Differences in zero-force and force-driven kinetics of ligand dissociation from β-galactoside-specific proteins (plant and animal lectins, immunoglobulin G) monitored by plasmon resonance and dynamic single molecule force microscopy. Arch Biochem Biophys 383:157–170

    Article  PubMed  CAS  Google Scholar 

  • Dietvorst J, Brandt A (2008) Flocculation in Saccharomyces cerevisiae is repressed by the COMPASS methylation complex during high-gravity fermentation. Yeast 12:891–901

    Article  CAS  Google Scholar 

  • Donlan RM, Costerton JW (2002) Biofilms: survival mechanisms of clinically relevant microorganisms. Clin Microbiol Rev 15:167–193

    Article  PubMed  CAS  Google Scholar 

  • Douglas LM, Li L, Yang Y, Dranginis AM (2007) Expression and characterization of the flocculin Flo11/Muc1, a Saccharomyces cerevisiae mannoprotein with homotypic properties of adhesion. Eukaryot Cell 6:2214–2221

    Article  PubMed  CAS  Google Scholar 

  • Dranginis AM, Rauceo JM, Coronado JE, Lipke PN (2007) A biochemical guide to yeast adhesins: glycoproteins for social and antisocial occasions. Microbiol Mol Biol Rev 71:282–294

    Article  PubMed  CAS  Google Scholar 

  • Eddy AA, Rudin AD (1958) Part of the yeast surface apparently involved in flocculation. J Inst Brew 64:19–21

    Google Scholar 

  • Erdman S, Lin L, Malczynski M, Snyder M (1998) Pheromone-regulated genes required for yeast mating differentiation. J Cell Biol 140:461–483

    Article  PubMed  CAS  Google Scholar 

  • Fernàndez-Busquets X, Burger MM (2003) Circular proteoglycans from sponges: first members of the spongican family. Cell Mol Life Sci 60:88–112

    Article  PubMed  Google Scholar 

  • Fichtner L, Schulze F, Braus GH (2007) Differential Flo8p-dependent regulation of FLO1 and FLO11 for cell–cell and cell-substrate adherence of S. cerevisiae S288c. Mol Microbiol 66:1276–1289

    Article  PubMed  CAS  Google Scholar 

  • Finn RD, Mistry J, Tate J, Coggill P, Heger A, Pollington JE, Gavin OL, Gunasekaran P, Ceric G, Forslund K, Holm L, Sonnhammer EL, Eddy SR, Bateman A (2010) The Pfam protein families database. Nucleic Acids Res 38(Database issue):D211–22

    Google Scholar 

  • Frank AT, Ramsook CB, Otoo HN, Tan C, Soybelman G, Rauceo JM, Gaur NK, Stephen A, Klotz SA, Lipke PN (2010) Structure and function of glycosylated tandem repeats from Candida albicans ALS adhesins. Eukaryot Cell 9:405–414

    Article  PubMed  CAS  Google Scholar 

  • Friedrichs J, Torkko JM, Helenius J, Teräväinen TP, Füllekrug J, Muller DJ, Simons K, Manninen A (2007) Contributions of galectin-3 and -9 to epithelial cell adhesion analyzed by single cell force spectroscopy. J Biol Chem 282:29375–29383

    Article  PubMed  CAS  Google Scholar 

  • Frieman MB, Cormack BP (2004) Multiple sequence signals determine the distribution of glycosylphosphatidylinositol proteins between the plasma membrane and cell wall in Saccharomyces cerevisiae. Microbiology 150:3105–3114

    Article  PubMed  CAS  Google Scholar 

  • Frieman MB, McCaffery JM, Cormack BP (2002) Modular domain structure in the Candida glabrata adhesin Epa1p, a beta1, 6 glucan-cross-linked cell wall protein. Mol Microbiol 46:479–492

    Article  PubMed  CAS  Google Scholar 

  • Gad M, Itoh A, Ikai A (1997) Mapping cell wall polysaccharides of living microbial cells using atomic force microscopy. Cell Biol Int 21:697–706

    Article  PubMed  CAS  Google Scholar 

  • Garcia-Manyes S, Bucior I, Ros R, Anselmetti D, Sanz F, Burger MM, Fernàndez-Busquets X (2006) Proteoglycan mechanics studied by single-molecule force spectroscopy of allotypic cell adhesion glycans. J Biol Chem 281:5992–5999

    Article  PubMed  CAS  Google Scholar 

  • Gaur NK, Klotz SA (1997) Expression, cloning, and characterization of a Candida albicans gene, ALA1, that confers adherence properties upon Saccharomyces cerevisiae for extracellular matrix proteins. Infect Immun 65:5289–5294

    PubMed  CAS  Google Scholar 

  • Gemmill TR, Trimble RB (1999) Overview of N- and O-linked oligosaccharide structures found in various yeast species. Biochim Biophys Acta 1426:227–237

    PubMed  CAS  Google Scholar 

  • Gimeno CJ, Ljungdahl PO, Styles CA, Fink GR (1992) Unipolar cell divisions in the yeast S. cerevisiae lead to filamentous growth: regulation by starvation and RAS. Cell 68:1077–1090

    Article  PubMed  CAS  Google Scholar 

  • Goto M (2007) Protein O-glycosylation in fungi: diverse structures and multiple functions. Biosci Biotechnol Biochem 71:1415–1427

    Article  PubMed  CAS  Google Scholar 

  • Govender P, Domingo JL, Bester MC, Pretorius IS, Bauer FF (2008) Controlled expression of the dominant flocculation genes FLO1, FLO5, and FLO11 in Saccharomyces cerevisiae. Appl Environ Microbiol 74:6041–6052

    Article  PubMed  CAS  Google Scholar 

  • Govender P, Bester M, Bauer FF (2010) FLO gene-dependent phenotypes in industrial wine yeast strains. Appl Microbiol Biotechnol 86:931–945

    Article  PubMed  CAS  Google Scholar 

  • Grandbois M, Dettmann W, Benoit M, Gaub HE (2000) Affinity imaging of red blood cells using an atomic force microscope. J Histochem Cytochem 48:719–724

    PubMed  CAS  Google Scholar 

  • Granek JA, Magwene PM (2010) Environmental and genetic determinants of colony morphology in yeast. PLoS Genet 6:e1000823

    Google Scholar 

  • Green CB, Cheng G, Chandra J, Mukherjee P, Ghannoum MA, Hoyer LL (2004) RT-PCR detection of Candida albicans ALS gene expression in the reconstituted human epithelium (RHE) model of oral candidiasis and in model biofilms. Microbiology 150:267–275

    Article  PubMed  CAS  Google Scholar 

  • Groes M, Teilum K, Olesen K, Poulsen FM, Henriksen A (2002) Purification, crystallization and preliminary X-ray diffraction analysis of the carbohydrate-binding domain of flocculin, a cell-adhesion molecule from Saccharomyces carlsbergensis. Acta Crystallogr D Biol Crystallogr 58:2135–2137

    Article  PubMed  CAS  Google Scholar 

  • Gunning AP, Bongaerts RJM, Morris VJ (2009) Recognition of galactan components of pectin by galectin-3. FASEB J 23:415–424

    Article  PubMed  CAS  Google Scholar 

  • Guo B, Styles CA, Feng Q, Fink GR (2000) A Saccharomyces gene family involved in invasive growth, cell–cell adhesion, and mating. Proc Natl Acad Sci USA 97:12158–12163

    Article  PubMed  CAS  Google Scholar 

  • Hakomori S (2003) Structure, organization, and function of glycosphingolipids in membrane. Curr Opin Hematol 10:16–24

    Article  PubMed  CAS  Google Scholar 

  • Hamada K, Fukuchi S, Arisawa M, Baba M, Kitada K (1998a) Screening for glycosylphosphatidylinositol (GPI)-dependent cell wall proteins in Saccharomyces cerevisiae. Mol Gen Genet 258:53–59

    Article  PubMed  CAS  Google Scholar 

  • Hamada K, Terashima H, Arisawa M, Kitada K (1998b) Amino acid sequence requirement for efficient incorporation of glycosylphosphatidylinositol-associated proteins into the cell wall of Saccharomyces cerevisiae. J Biol Chem 273:26946–26953

    Article  PubMed  CAS  Google Scholar 

  • Hanley WD, Wirtz D, Konstantopoulos K (2004) Distinct kinetic and mechanical properties govern selectin-leukocyte interactions. J Cell Sci 117:2503–2511

    Article  PubMed  CAS  Google Scholar 

  • Haseley SR, Vermeer HJ, Kamerling JP, Vliegenthart JF (2001) Carbohydrate self-recognition mediates marine sponge cellular adhesion. Proc Natl Acad Sci USA 98:9419–9424

    Article  PubMed  CAS  Google Scholar 

  • Helenius J, Heisenberg CP, Gaub HE, Muller DJ (2008) Single-cell force spectroscopy. J Cell Sci 121:1785–1791

    Article  PubMed  CAS  Google Scholar 

  • Hoyer LL (2001) The ALS gene family of Candida albicans. Trends Microbiol 9:176–180

    Article  PubMed  CAS  Google Scholar 

  • Hoyer LL, Payne TL, Hecht JE (1998) Identification of Candida albicans ALS2 and ALS4 and localization of als proteins to the fungal cell surface. J Bacteriol 180:5334–5343

    PubMed  CAS  Google Scholar 

  • Iserentant D (1996) Practical aspects of yeast flocculation. Cerevisia 21:30–33

    CAS  Google Scholar 

  • Jabra-Rizk MA, Falkler WA Jr, Merz WG, Baqui AA, Kelley JI, Meiller TF (2001) Cell surface hydrophobicity-associated adherence of Candida dubliniensis to human buccal epithelial cells. Rev Iberoam Micol 18:17–22

    PubMed  CAS  Google Scholar 

  • Jabra-Rizk MA, Falkler WA, Meiller TF (2004) Fungal biofilms and drug resistance. Emerg Infect Dis 10:14–19

    PubMed  CAS  Google Scholar 

  • Jarchow J, Fritz J, Anselmetti D, Calabro A, Hascall VC, Gerosa D, Burger MM, Fernàndez-Busquets X (2000) Supramolecular structure of a new family of circular proteoglycans mediating cell adhesion in sponges. J Struct Biol 132:95–105

    Article  PubMed  CAS  Google Scholar 

  • Jentoft N (1990) Why are proteins O-glycosylated? Trends Biochem Sci 15:291–294

    Article  PubMed  CAS  Google Scholar 

  • Jin YL, Speers RA (1998) Flocculation of Saccharomyces cerevisiae. Food Res Int 31:421–440

    Article  CAS  Google Scholar 

  • Johnston JR, Reader HP (1983) Genetic control of flocculation. In: Spencer JFT, Spencer DM, Sait ARW (eds) Yeast genetics, fundamental and applied aspects. Springer-Verlag, Berlin, pp 205–224

    Google Scholar 

  • Kang S, Elimelech M (2009) Bioinspired single bacterial cell force spectroscopy. Langmuir 25:9656–9659

    Article  PubMed  CAS  Google Scholar 

  • Kaplanski G, Farnarier C, Tissot O, Pierres A, Benoliel AM, Alessi MC, Kaplanski S, Bongrand P (1993) Granulocyte-endothelium initial adhesion. Analysis of transient binding events mediated by E-selectin in a laminar shear flow. Biophys J 64:1922–1933

    Article  PubMed  CAS  Google Scholar 

  • Kelley LA, Sternberg MJ (2009) Protein structure prediction on the Web: a case study using the Phyre server. Nat Protoc 4:363–371

    Article  PubMed  CAS  Google Scholar 

  • Klebe RJ (1974) Isolation of a collagen-dependent cell attachment factor. Nature 250:248–251

    Article  PubMed  CAS  Google Scholar 

  • Kobayashi O, Suda H, Ohtani T, Sone H (1996) Molecular cloning and analysis of the dominant flocculation gene FLO8 from Saccharomyces cerevisiae. Mol Gen Genet 251:707–715

    PubMed  CAS  Google Scholar 

  • Kobayashi O, Hayashi N, Kuroki R, Sone H (1998) Region of FLO1 proteins responsible for sugar recognition. J Bacteriol 180:6503–6510

    PubMed  CAS  Google Scholar 

  • Kojic EM, Darouiche RO (2004) Candida infections of medical devices. Clin Microbiol Rev 17:255–267

    Article  PubMed  Google Scholar 

  • Kornfeld R, Kornfeld S (1985) Assembly of asparagine-linked oligosaccharides. Annu Rev Biochem 54:631–664

    Article  PubMed  CAS  Google Scholar 

  • Kyte J, Doolittle RF (1982) A simple method for displaying the hydropathic character of a protein. J Mol Biol 157:105–132

    Article  PubMed  CAS  Google Scholar 

  • Lambrechts MG, Bauer FF, Marmur J, Pretorius IS (1996) Muc1, a mucin-like protein that is regulated by Mss10, is critical for pseudohyphal differentiation in yeast. Proc Natl Acad Sci USA 93:8419–8424

    Article  PubMed  CAS  Google Scholar 

  • Li F, Palecek SP (2003) EAP1, a Candida albicans gene involved in binding human epithelial cells. Eukaryot Cell 2:1266–1273

    Article  PubMed  CAS  Google Scholar 

  • Liang MN, Smith SP, Metallo SJ, Choi IS, Prentiss M, Whitesides GM (2000) Measuring the forces involved in polyvalent adhesion of uropathogenic Escherichia coli to mannose-presenting surfaces. Proc Natl Acad Sci USA 97:13092–13096

    Article  PubMed  CAS  Google Scholar 

  • Liu N, Wang D, Wang ZY, He XP, Zhang B (2007a) Genetic basis of flocculation phenotype conversion in Saccharomyces cerevisiae. FEMS Yeast Res 7:1362–1370

    Article  PubMed  CAS  Google Scholar 

  • Liu N, Wang DL, Wang ZY, He XP, Zhang BR (2007b) Deletion of tandem repeats causes flocculation phenotype conversion from Flo1 to NewFlo in Saccharomyces cerevisiae. J Mol Microbiol Biotechnol 16:137–145

    Article  PubMed  CAS  Google Scholar 

  • Lo WS, Dranginis AM (1996) FLO11, a yeast gene related to the STA genes, encodes a novel cell surface flocculin. J Bacteriol 178:7144–7151

    PubMed  CAS  Google Scholar 

  • Lo WS, Dranginis AM (1998) The cell surface flocculin Flo11 is required for pseudohyphae formation and invasion by Saccharomyces cerevisiae. Mol Biol Cell 9:161–171

    PubMed  CAS  Google Scholar 

  • Ludwig T, Kirmse R, Poole K, Schwarz US (2008) Probing cellular microenvironments and tissue remodeling by atomic force microscopy. Pflügers Arch Eur J Physiol 456:29–49

    Article  CAS  Google Scholar 

  • Mallinson PR, Smith GT, Wilson CC, Grech E, Wozniak K (2003) From weak interactions to covalent bonds: a continuum in the complexes of 1,8-bis(dimethylamino)naphthalene. J Am Chem Soc 125:4259–4270

    Article  PubMed  CAS  Google Scholar 

  • Miki BLA, Poon NH, James AP, Seligy VL (1980) Flocculation in Saccharomyces cerevisiae: mechanism of cell–cell interaction. In: Stewart G, Russell I (eds) Current developments in yeast research. Pergamon Press Canada Ltd., Toronto, pp 165–170

    Google Scholar 

  • Miki BLA, Poon NH, James AP, Seligy VL (1982) Possible mechanism for flocculation interactions governed by gene FLO1 in Saccharomyces cerevisiae. J Bacteriol 150:878–889

    PubMed  CAS  Google Scholar 

  • Misevic GN, Burger MM (1986) Reconstitution of high cell binding affinity of a marine sponge aggregation factor by cross-linking of small low affinity fragments into a large polyvalent polymer. J Biol Chem 261:2853–2859

    PubMed  CAS  Google Scholar 

  • Morgan MR, Humphries MJ, Bass MD (2007) Synergistic control of cell adhesion by integrins and syndecans. Nat Rev Mol Cell Biol 8:957–969

    Article  PubMed  CAS  Google Scholar 

  • Nedovic V, Willaert R, Leskosek-Cukalovic I, Obradovic B, Bugarski B (2005) Beer production using immobilised cells. In: Nedovic V, Willaert R (eds) Applications of cell immobilisation biotechnology. Kluwer Academic Publishers, Dordrecht, pp 259–273

    Chapter  Google Scholar 

  • Nishihara H, Toraya T (1987) Essential roles of cell surface protein and carbohydrate components in flocculation of a brewer’s yeast. Agric Biol Chem 51:2721–2726

    CAS  Google Scholar 

  • Nishikawa K, Noguchi T (1991) Predicting protein secondary structure based on amino acid sequence. Methods Enzymol 202:31–44

    Article  PubMed  CAS  Google Scholar 

  • Otoo HN, Lee KG, Qiu W, Lipke PN (2008) Candida albicans Als adhesins have conserved amyloid-forming sequences. Eukaryot Cell 7:776–782

    Article  PubMed  CAS  Google Scholar 

  • Petosa C, Collier RJ, Klimpel KR, Leppla SH, Liddington RC (1997) Crystal structure of the anthrax toxin protective antigen. Nature 385:833–838

    Article  PubMed  CAS  Google Scholar 

  • Puntheeranurak T, Wildling L, Gruber HJ, Kinne RKH, Hinterdorfer P (2006) Ligands on the string: single-molecule AFM studies on the interaction of antibodies and substrates with the Na+-glucose co-transporter SGLT1 in living cells. J Cell Sci 119:2960–2967

    Article  PubMed  CAS  Google Scholar 

  • Puntheeranurak T, Wimmer B, Castaneda F, Gruber HJ, Hinterdorfer P, Kinne RKH (2007) Substrate specificity of sugar transport by rabbit SGLT1: single-molecule atomic force microscopy versus transport studies. Biochemistry 46:2797–2804

    Article  PubMed  CAS  Google Scholar 

  • Ramsook C, Tan C, Garcia MC, Fung R, Soybelman G, Henry R, Litewka A, O’Meally S, Otoo HN, Khalaf RA, Dranginis AM, Gaur NK, Klotz SA, Rauceo JM, Jue CK, Lipke PN (2010) Yeast cell adhesion molecules have functional amyloid-forming sequences. Eukaryot Cell 9:393–404

    Article  PubMed  CAS  Google Scholar 

  • Ratto TV, Langry KC, Rudd RE, Balhorn RL, Allen MJ, McElfresh MW (2004) Force spectroscopy of the double-tethered concanavalin-A mannose bond. Biophys J 86:2430–2437

    Article  PubMed  CAS  Google Scholar 

  • Reynolds TB, Fink GR (2001) Bakers’ yeast, a model for fungal biofilm formation. Science 291:878–881

    Article  PubMed  CAS  Google Scholar 

  • Reynolds TB, Jansen A, Peng X, Fink GR (2008) Mat formation in Saccharomyces cerevisiae requires nutrient and pH gradients. Eukaryot Cell 7:122–130

    Article  PubMed  CAS  Google Scholar 

  • Rigden DJ, Mello LV, Galperin MY (2004) The PA14 domain, a conserved all-beta domain in bacterial toxins, enzymes, adhesins and signaling molecules. Trends Biochem Sci 29:335–339

    Article  PubMed  CAS  Google Scholar 

  • Roberts RL, Fink GR (1994) Elements of a single MAP kinase cascade in Saccharomyces cerevisiae mediate two developmental programs in the same cell type: mating and invasive growth. Genes Dev 8:2974–2985

    Article  PubMed  CAS  Google Scholar 

  • Roy A, Lu CF, Marykwas DL, Lipke PN, Kurjan J (1991) The AGA1 product is involved in cell surface attachment of the Saccharomyces cerevisiae cell adhesion glycoprotein a-agglutinin. Mol Cell Biol 11:4196–4206

    PubMed  CAS  Google Scholar 

  • Rupp S, Summers E, Lo HJ, Madhani H, Fink G (1999) MAP kinase and cAMP filamentation signaling pathways converge on the unusually large promoter of the yeast FLO11 gene. EMBO J 18:1257–1269

    Article  PubMed  CAS  Google Scholar 

  • Russell I, Stewart GG, Reader HP, Johnston JR, Martin PA (1980) Revised nomenclature of genes that control yeast flocculation. J Inst Brew 86:120–121

    Google Scholar 

  • Sieiro C, Reboredo NM, Villa TG (1995) Flocculation of industrial and laboratory strains of Saccharomyces cerevisiae. J Ind Microbiol 14:461–466

    Article  PubMed  CAS  Google Scholar 

  • Smit G, Straver MH, Lugtenberg BJ, Kijne JW (1992) Flocculence of Saccharomyces cerevisiae cells is induced by nutrient limitation, with cell surface hydrophobicity as a major determinant. Appl Environ Microbiol 58:3709–3714

    PubMed  CAS  Google Scholar 

  • Smukalla S, Caldara M, Pochet N, Beauvais A, Guadagnini S, Yan C, Vinces MD, Jansen A, Prevost MC, Latgé JP, Fink GR, Foster KR, Verstrepen KJ (2008) FLO1 is a variable green beard gene that drives biofilm-like cooperation in budding yeast. Cell 135:726–737

    Article  PubMed  CAS  Google Scholar 

  • Spillmann D, Burger MM (1996) Carbohydrate–carbohydrate interactions in adhesion. J Cell Biochem 61:562–568

    Article  PubMed  CAS  Google Scholar 

  • Stewart GG, Goring TE (1976) Effect of some monovalent and divalent metal ions on the flocculation of brewer’s yeast strains. J Inst Brew 82:341–342

    CAS  Google Scholar 

  • Stewart GG, Russell I (1981) Yeast flocculation. Academic Press, New York

    Google Scholar 

  • Stratford M (1989) Evidence for two mechanisms of flocculation in Saccharomyces cerevisiae. Yeast 5:441–445

    Article  Google Scholar 

  • Stratford M, Assinder S (1991) Yeast flocculation: Flo1 and NewFlo phenotypes and receptor structure. Yeast 7:559–574

    Article  PubMed  CAS  Google Scholar 

  • Straver MH, Smit G, Kijne JW (1994a) Purification and partial characterization of a flocculin from brewer’s yeast. Appl Environ Microbiol 60:2754–2758

    PubMed  CAS  Google Scholar 

  • Straver MH, Traas VM, Smit G, Kijne JW (1994b) Isolation and partial purification of mannose-specific agglutinin from brewer’s yeast involved in flocculation. Yeast 10:1183–1193

    Article  PubMed  CAS  Google Scholar 

  • Tanner W, Lehle L (1987) Protein glycosylation in yeast. Biochim Biophys Acta 906:81–99

    PubMed  CAS  Google Scholar 

  • Taubenberger A, Cisneros DA, Friedrichs J, Puech PH, Muller DJ, Franz CM (2007) Revealing early steps of alpha2beta1 integrin-mediated adhesion to collagen type I by using single-cell force spectroscopy. Mol Biol Cell 18:1634–1644

    Article  PubMed  CAS  Google Scholar 

  • Taylor NW, Orton WL (1978) Aromatic compounds and sugars in flocculation of Saccharomyces cerevisiae. J Inst Brew 84:113–114

    CAS  Google Scholar 

  • Teunissen AW, Steensma HY (1995) Review: the dominant flocculation genes of Saccharomyces cerevisiae constitute a new subtelomeric gene family. Yeast 11:1001–1013

    Article  PubMed  CAS  Google Scholar 

  • Teunissen AW, Holub E, Van der Hucht J, Van den Berg JA, Steensma HY (1993a) Sequence of the open reading frame of the FLO1 gene from Saccharomyces cerevisiae. Yeast 9:423–427

    Article  PubMed  CAS  Google Scholar 

  • Teunissen AW, van den Berg JA, Steensma HY (1993b) Physical localization of the flocculation gene FLO1 on chromosome I of Saccharomyces cerevisiae. Yeast 9:1–10

    Article  PubMed  CAS  Google Scholar 

  • Teunissen AW, van den Berg JA, Steensma HY (1995) Localization of the dominant flocculation genes FLO5 and FLO8 of Saccharomyces cerevisiae. Yeast 11:735–745

    Article  PubMed  CAS  Google Scholar 

  • Todeschini AR, Hakomori SI (2008) Functional role of glycosphingolipids and gangliosides in control of cell adhesion, motility, and growth, through glycosynaptic microdomains. Biochim Biophys Acta 1780:421–433

    Google Scholar 

  • Touhami A, Hoffmann B, Vasella A, Denis FA, Dufrêne YF (2003a) Probing specific lectin–carbohydrate interactions using atomic force microscopy imaging and force measurements. Langmuir 19:1745–1751

    Article  CAS  Google Scholar 

  • Touhami A, Hoffmann B, Vasella A, Denis FA, Dufrêne YF (2003b) Aggregation of yeast cells: direct measurement of discrete lectin–carbohydrate interactions. Microbiology 149:2873–2878

    Article  PubMed  CAS  Google Scholar 

  • Van Mulders SE, Christianen E, Saerens SM, Daenen L, Verbelen PJ, Willaert R, Verstrepen KJ, Delvaux FR (2009) Phenotypic diversity of Flo protein family-mediated adhesion in Saccharomyces cerevisiae. FEMS Yeast Res 9:178–190

    Article  PubMed  CAS  Google Scholar 

  • Verbelen PJ, Nedović VA, Manojlović V, Delvaux FR, Laskošek-Čukalović I, Bugarski B, Willaert R (2010) Bioprocess intensification of beer fermentation using immobilised cells. In: Zuidam NJ, Nedović A (eds) Encapsulation technologies for active food ingredients and food processing. Springer, New York, pp 303–325

    Google Scholar 

  • Verstrepen KJ, Klis FM (2006) Flocculation, adhesion and biofilm formation in yeasts. Mol Microbiol 60:5–15

    Article  PubMed  CAS  Google Scholar 

  • Verstrepen KJ, Derdelinckx G, Verachtert H, ·Delvaux FR (2003) Yeast flocculation: what brewers should know. Appl Microbiol Biotechnol 61:197–205

    PubMed  CAS  Google Scholar 

  • Verstrepen KJ, Reynolds TB, Fink GR (2004) Origins of variation in the fungal cell surface. Nat Rev Microbiol 2:533–540

    Article  PubMed  CAS  Google Scholar 

  • Verstrepen KJ, Jansen A, Lewitter F, Fink GR (2005) Intragenic tandem repeats generate functional variability. Nat Genet 37:986–990

    Article  PubMed  CAS  Google Scholar 

  • Vezinhet F, Blondin B, Barré P (1991) Mapping of FLO5 of Saccharomyces cerevisiae by transfer of a chromosome during cytoduction. Biotechnol Lett 13:47–52

    Article  CAS  Google Scholar 

  • Vyas VK, Kuchin S, Berkey CD, Carlson M (2003) Snf1 kinases with different beta-subunit isoforms play distinct roles in regulating haploid invasive growth. Mol Cell Biol 23:1341–1348

    Article  PubMed  CAS  Google Scholar 

  • Watari J, Takata Y, Ogawa M, Sahara H, Koshino S, Onnela ML, Airaksinen U, Jaatinen R, Penttilä M, Keränen S (1994) Molecular cloning and analysis of the yeast flocculation gene FLO1. Yeast 10:211–225

    Article  PubMed  CAS  Google Scholar 

  • Willaert R (2007a) The beer brewing process: wort production and beer fermentation. In: Hui YN (ed) Handbook of food products manufacturing. Wiley, Hoboken, New Jersey, pp 443–506

    Chapter  Google Scholar 

  • Willaert R (2007b) Cell immobilization and its applications in biotechnology: current trends and future prospects. In: El-Mansi EMT, Bryce CFA, Demain AL, Allman AR (eds) Fermentation microbiology and biotechnology. CRC Press, Boca Raton, pp 287–361

    Google Scholar 

  • Willaert R, Baron GV (1996) Gel entrapment and micro-encapsulation: methods, applications and engineering principles. Rev Chem Eng 12:1–205

    CAS  Google Scholar 

  • Willaert R, Nedovic VA (2006) Primary beer fermentation by immobilised yeast—a review on flavour formation and control strategies. J Chem Technol Biotechnol 81:1353–1367

    Article  CAS  Google Scholar 

  • Wisplinghoff H, Bischoff T, Tallent SM, Seifert H, Wenzel RP, Edmond MB (2004) Nosocomial bloodstream infections in US hospitals: analysis of 24179 cases from a prospective nationwide surveillance study. Clin Infect Dis 39:309–317

    Article  PubMed  Google Scholar 

  • Yoneda A, Couchman JR (2003) Regulation of cytoskeletal organization by syndecan transmembrane proteoglycans. Matrix Biol 22:25–33

    Article  PubMed  CAS  Google Scholar 

  • Zara S, Bakalinsky AT, Zara G, Pirino G, Demontis MA, Budroni M (2005) FLO11-based model for air–liquid interfacial biofilm formation by Saccharomyces cerevisiae. Appl Environ Microbiol 71:2934–2939

    Article  PubMed  CAS  Google Scholar 

  • Zara G, Zara S, Pinna C, Marceddu S, Budroni M (2009) FLO11 gene length and transcriptional level affect biofilm forming ability of wild flor strains of Saccharomyces cerevisiae. Microbiology. doi:10.1099/mic.0.028738-0

  • Zupancic ML, Frieman M, Smith D, Alvarez RA, Cummings RD, Cormack BP (2008) Glycan microarray analysis of Candida glabrata adhesin ligand specificity. Mol Microbiol 68:547–559

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work is supported by the Belgian Federal Science Policy Office (Belspo) and European Space Agency (ESA) PRODEX program, the Institute for the Promotion of Innovation through Science and Technology in Flanders (IWT-Vlaanderen), and the Research Council of the Vrije Universiteit Brussel.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ronnie Willaert.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Goossens, K., Willaert, R. Flocculation protein structure and cell–cell adhesion mechanism in Saccharomyces cerevisiae . Biotechnol Lett 32, 1571–1585 (2010). https://doi.org/10.1007/s10529-010-0352-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10529-010-0352-3

Keywords

Navigation