Skip to main content
Log in

Casiopeina III-ia induces apoptosis in HCT-15 cells in vitro through caspase-dependent mechanisms and has antitumor effect in vivo

  • Published:
BioMetals Aims and scope Submit manuscript

Abstract

The aim of this study was to evaluate the in vitro and in vivo effects of the new chemotherapy agent Casiopeina III-ia [(4,4′-dimethyl-2,2′-bipiridine)(acetylacetonate) Copper (II) nitrate] on HCT-15 (p53–/-) colon cellular line. In vitro, the drug reduced the viability and induced necrosis and apoptosis in a dose dependent manner, without affecting cell cycle phases. Apoptosis was related to Bax increasing levels, suggesting a caspase-dependent mechanism of death, as verified by nucleosomal fragmentation of DNA. In vivo, the antitumor activity of Casiopeina III-ia was tested in HCT-15 cells transplanted to nude mice. In this study we will show that the novel antineoplastic agent Casiopeina III-ia is active on this colon tumor line, setting out as a good candidate for the treatment of colon tumors refractory to chemotherapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Brouns RE, Poot M, de Vrind R, Hoek-Kon T, Henderson PT, Kuyper CMA (1979) Measurement of DNA-excision repair suspensions of freshly isolated rat hepatocytes after exposure to some carcinogenic compounds. Its possible use in carcinogenic screening. Mut Res 64:425–432

    CAS  Google Scholar 

  • Budihardjo I, Oliver H, Lutter M, Luo X, Wang X (1999) Biochemical pathways of caspase activation during apoptosis. Annu Rev Cell Dev Biol 15:269–290

    Article  PubMed  CAS  Google Scholar 

  • Bunz F, Hwang PM, Torrance C, Waldman T, Zhang Y, Dillehay L, Williams J, Lengauer C, Kinzler K, Vogelstein B (1999) Disruption of p53 in human cancer cells alters the response to therapeutic agents. J Clin Invest 104:263–269

    Article  PubMed  CAS  Google Scholar 

  • Costanzo A, Merlo P, Pediconi N, Fulco M, Sartorelli V, Cole PA, Fontemaggi G, Fanciulli M, Schiltz L, Blandino G, Balsano C, Levero M (2002) DNA damage-dependent acetylation of p73 dictates the selective activation of apoptotic target genes. Mol Cell 9:175–186

    Article  PubMed  CAS  Google Scholar 

  • Cvitkovic E, Bekradda M (1999) Oxaliplatin: a new therapeutic option in colorectal cancer. Semin Oncol 26:647–662

    PubMed  CAS  Google Scholar 

  • De Vizcaya-Ruiz A, Rivero-Muller L, Ruiz-Ramírez L, Kass GEN, Kelland LR, Orr RM, Dobrota M (2000) Induction of apoptosis by a novel Copper-based anticancer compound, Casiopeina II, in L1210 murine Leukaemia and CH1 human ovarian carcinoma cells. Toxicol in vitro 14:1–5

    Article  PubMed  Google Scholar 

  • di Zerega GS (1994) Contemporary adhesion prevention. Fertil Steril 61:219–235

    Google Scholar 

  • Fan S, Smith ML, Rivet DJ, Duba D, Zhan Q, Kohn KW, Fornace AJ Jr, O`Connor PM (1995) Disruption of p53 function sensitizes breast cancer MCF-7 cells to cisplatin and pentoxifylline. Cancer Res 55:1649–1654

    PubMed  CAS  Google Scholar 

  • Fantin VR, Berardi MJ, Scorrano L, Kormeyer SJ, Leder P (2002) A novel mitochondriotoxic small molecule that selectively inhibits tumor cell growth. Cancer Cell 2:29–42

    Article  PubMed  CAS  Google Scholar 

  • Fridman JS, Lowe SW (2003) Control of apoptosis by p53. Oncogene 22:9030–9040

    Article  PubMed  CAS  Google Scholar 

  • Gaiddon C, Jeannequin P, Bischoff P, Pfeffer M, Sirlin C, Loeffler JP (2005) Ruthenium (II)-derived organometallic compounds induces cytostatic and cytotoxic effects on mammalian cancer cell lines through p53-dependent and p53-independent mechanisms. J Pharmacol Exp Ther 315:1403–1411

    Article  PubMed  CAS  Google Scholar 

  • Gracia-Mora I, Ruiz-Ramírez L, Tinoco-Méndez M, Márquez-Quiñones A, Romero-De Lira M, Marín-Hernández A, Macías-Rosales M, Bravo-Gómez ME (2001) Knight´s move in the periodic table, from copper to platinum, novel antitumor mixed chelate copper compounds, casiopeinas, evaluated by an in vitro human and murine cancer cell line panel. Met Based Drug 8:19–28

    Article  CAS  Google Scholar 

  • International Multicentre Pooled Analysis of Colon Cancer Trials (IMPACT) investigators (1995) Efficacy of adjuvant fluorouracil and folinic acid in colon cancer. Lancet 345:939–944

    Article  Google Scholar 

  • Irwin MS, Kondo K, Marin MC, Cheng LS, Hahn WC (2003) Chemosensitivity linked to p73 function. Cancer Cell 3:403–410

    Article  PubMed  CAS  Google Scholar 

  • Johnstone RW, Ruefli AA, Lowe SW (2002) Apoptosis: a link between cancer genetics and chemotherapy. Cell 108:153–164

    Article  PubMed  CAS  Google Scholar 

  • Kaufmann SH, Earnshaw WC (2000) Induction of apoptosis by cancer chemotherapy. Exp Cell Res 256:42–49

    Article  PubMed  CAS  Google Scholar 

  • Kim R, Tanabe K, Uchida Y, Emi M, Inoue H, Toge T (2003) Current status of the molecular mechanism of anticancer drug-induced apoptosis. The contribution of molecular-level analysis of chemotherapy. Cancer Chemother Pharmacol 50:343–352

    Article  CAS  Google Scholar 

  • Kothakota S, Azuma T, Reinard C, Klippel A, Tang J, Chu K, McGarry TJ, Kirschner MW, Koths K, Kwiatkowski DJ, Williams LT (1997) Caspase-3 generated fragment of gelsolin: effector of morphological change in apoptosis. Science 278:294–298

    Article  PubMed  CAS  Google Scholar 

  • Li P, Nijhawan D, Budihardjo I, Srinivasula S, Ahmad M, Alnemri E, Wang X (1997) Cytochrome c and dATP-dependent formation of Apaf-1/caspase-9 complex initiates an apoptotic protease cascade. Cell 91:479–489

    Article  PubMed  CAS  Google Scholar 

  • Liu X, Naekyung C, Yang J, Jemmerson R, Wang X (1996) Induction of apoptotic program in cell-free extracts: requirement for dATP and cytochrome c. Cell 86:147–157

    Article  PubMed  CAS  Google Scholar 

  • Marín-Hernández A, Gracia-Mora I, Ruiz-Ramírez L, Moreno-Sánchez R (2003) Toxic effects of copper-based antineoplastic drugs (Casiopeínas®) on mitochondrial functions. Biochem Pharmacol 65:1979–1989

    Article  PubMed  CAS  Google Scholar 

  • Martin DA, Siegel RM, Zheng L, Lenardo M (1998) Membrane oligomerization and cleavage activates the caspase-8 (FLICE/MACHα1) death signal. J Biol Chem 273:4345–4349

    Article  PubMed  CAS  Google Scholar 

  • Mashima T, Naito M, Tsuruo T (1999) Caspase mediated cleavage of cytoskeletal actin plays a positive role in the process of morphological apoptosis. Oncogene 18:2423–2430

    Article  PubMed  CAS  Google Scholar 

  • Mashima T, Oh-hara T, Sato S, Mochizuki M, Sugimoto Y, Yamazaki K, Hamada J, Tada M, Moriuchi T, Ishikawa Y, Kato Y, Tomoda H, Yamori T, Tsuruo T (2005) p-53 defective tumors with a functional apoptosome-mediated pathway: a new therapeutic target. J Natl Cancer Inst 97:765–777

    Article  PubMed  CAS  Google Scholar 

  • Monk BJ, Berman NL, Montz FJ (1994) Adhesions after extensive gynecologic surgery: clinical significance, etiology, and prevention. Am J Obstet Gynecol 170:1396–1403

    PubMed  CAS  Google Scholar 

  • Muzio M, Salvesen G, Dixit V (1997) FLICE induced apoptosis in a cell-free system. Cleavage of caspase zymogens. J Biol Chem 272:2952–2956

    Article  PubMed  CAS  Google Scholar 

  • Muzio M, Stockwell B, Stennicke HR, Salvesen GS, Dixit V (1998) An induced proximity model for caspase-8 activation. J Biol Chem 273:2926–2930

    Article  PubMed  CAS  Google Scholar 

  • Nagata S (1997) Apoptosis by death factor. Cell 81:505–512

    Google Scholar 

  • Ramadan S, Terrinoni A, Catani MV, Sayan E, Knight RA, Mueller M, Krammer PH, Melino G, Candi E (2005) p73 induces apoptosis by different mechanisms. Biochem Biophys Res Commun 331:713–717

    Article  PubMed  CAS  Google Scholar 

  • Ruiz-Azuara L (1993) US Patent, Ap. 21 (1992), no. 5,107,005; US Patent, Re 35,458, February 18 (1997); US Patent November 19 (1996), no. 5,576,326, 407543 SECOFI

  • Saunders M, Iveson T (2006) Management of advanced colorectal cancer: state of the art. Br J Cancer 95:131–138

    Article  PubMed  CAS  Google Scholar 

  • Shackelford RE, Kaufmann WK, Paules RS (2000) Oxidative stress and cell cycle checkpoint function. Free Radic Biol Med 28:1387–1404

    Article  PubMed  CAS  Google Scholar 

  • Skehan P, Storeng R, Scudiero D, Monks A, McMahon J, Vistica D, Warren JT, Bockesch H, Kenney S, Boyd MR (1990) New colorimetric cytotoxicity assay for anticancer-drug screening. J Natl Cancer Inst 82:1107–1112

    Article  PubMed  CAS  Google Scholar 

  • Srinivasula SM, Ahmad M, Fernandes-Alnemri T, Alnemri ES (1998) Autoactivation of procaspase-9 by Apaf-1-mediated oligomerization. Mol Cell 1:949–957

    Article  PubMed  CAS  Google Scholar 

  • Theodorakis P, Lomonosova E, Chinnadurai G (2002) Critical requirement of Bax for manifestation of apoptosis induced by multiple stimuli in human epithelial cancer cells. Cancer Res 62:3373–3376

    PubMed  CAS  Google Scholar 

  • Tovar-Tovar A, Ruiz-Ramirez L, Campero A, Romerosa A, Moreno-Esparza R, Rosales-Hoz MJ (2004) Structural and reactivity studies on 4,4′-dimethyl-2,2′-bipyridine acetylacetonate copper(II) nitrate (Casiopeína III-ia) with methionine, by UV–visible and EPR techniques [Cu(4,4′-dimethyl, 2,2′-bypiridine)(acac)]ClO4. J Inorg Biochem 98:1045–1053

    Article  CAS  Google Scholar 

  • Trejo-Solís C, Palencia G, Zúñiga S, Rodríguez-Ropón A, Osorio-Rico L, Sánchez-Torres L, Gracia-Mora I, Márquez-Rosado L, Sánchez A, Moreno García ME, Cruz A, Bravo-Gómez ME, Ruiz-Ramírez L, Rodríguez-Enríquez S, Sotelo-Morales J (2005) Cas IIgly induces apoptosis in glioma C6 cells in vitro and in vivo through caspase-dependent and caspase-independent mechanism of apoptosis. Neoplasia 6:563–574

    Article  CAS  Google Scholar 

  • Vermes I, Haanen C, Steffens-Nakken H, Reutelingsperger C (1995) A novel assay for apoptosis. Flow cytometric detection of phosphatidylserine on early apoptotic cells using fluorescein labeled Annexin V. J Immunol Methods 184:39–51

    Article  PubMed  CAS  Google Scholar 

  • Wahl AF, Donaldson KL, Fairchild C, Lee FY, Foster SA, Demers GW, Galloway DA (1996) Loss of normal p53 functions confers sensitization to Taxol by increasing G2/M arrest and apoptosis. Nat Med 2:72–79

    Article  PubMed  CAS  Google Scholar 

  • Zhang J, Xu M (2001) Apoptotic DNA fragmentation and tissue homeostasis. Trends Cell Biol 12:84–89

    Article  Google Scholar 

  • Ziegler U, Gloscurth P (2004) Morphological features of cell death. News Physiol Sci 19:124–128

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This Project was realized with grants of CONACYT-2002-SALUD-C01-7677 and CONACYT U-41997MA1 sectorial projects. We thank Maria Elena Bravo for the synthesis and characterization of Cas III-ia. We also thank Emma Serrano for the preparation of the photographic material.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francisco Carvallo-Chaigneau.

Additional information

Lena Ruiz-Azuara - Previously as Lena Ruiz-Ramirez.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Carvallo-Chaigneau, F., Trejo-Solís, C., Gómez-Ruiz, C. et al. Casiopeina III-ia induces apoptosis in HCT-15 cells in vitro through caspase-dependent mechanisms and has antitumor effect in vivo. Biometals 21, 17–28 (2008). https://doi.org/10.1007/s10534-007-9089-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10534-007-9089-4

Keywords

Navigation