Skip to main content

Advertisement

Log in

Microbial responses to environmental arsenic

  • Published:
BioMetals Aims and scope Submit manuscript

Abstract

Microorganisms have evolved dynamic mechanisms for facing the toxicity of arsenic in the environment. In this sense, arsenic speciation and mobility is also affected by the microbial metabolism that participates in the biogeochemical cycle of the element. The ars operon constitutes the most ubiquitous and important scheme of arsenic tolerance in bacteria. This system mediates the extrusion of arsenite out of the cells. There are also other microbial activities that alter the chemical characteristics of arsenic: some strains are able to oxidize arsenite or reduce arsenate as part of their respiratory processes. These type of microorganisms require membrane associated proteins that transfer electrons from or to arsenic (AoxAB and ArrAB, respectively). Other enzymatic transformations, such as methylation-demethylation reactions, exchange inorganic arsenic into organic forms contributing to its complex environmental turnover. This short review highlights recent studies in ecology, biochemistry and molecular biology of these processes in bacteria, and also provides some examples of genetic engineering for enhanced arsenic accumulation based on phytochelatins or metallothionein-like proteins.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig.1
Fig. 2

Similar content being viewed by others

References

  • Achour AR, Bauda P, Billard P (2007) Diversity of arsenite transporter genes from arsenic-resistant soil bacteria. Res Microbiol 158:128–137. doi:10.1016/j.resmic.2006.11.006

    PubMed  CAS  Google Scholar 

  • Afkar E, Lisak J, Saltikov C, Basu P, Oremland RS, Stolz JF (2003) The respiratory arsenate reductase from Bacillus selenitireducens strain MLS10. FEMS Microbiol Lett 226:107–112. doi:10.1016/S0378-1097(03)00609-8

    PubMed  CAS  Google Scholar 

  • Ahmann D, Roberts AL, Krumholz LR, Morel FM (1994) Microbe grows by reducing arsenic. Nature 371:750. doi:10.1038/371750a0

    PubMed  CAS  Google Scholar 

  • Anderson GL, Williams J, Hille R (1992) The purification and characterization of arsenite oxidase from Alcaligenes faecalis, a molybdenum-containing hydroxylase. J Biol Chem 267:23674–23682

    PubMed  CAS  Google Scholar 

  • Appelo CA, Van Der Weiden MJ, Tournassat C, Charlet L (2002) Surface complexation of ferrous iron and carbonate on ferrihydrite and the mobilization of arsenic. Environ Sci Technol 36:3096–3103. doi:10.1021/es010130n

    PubMed  CAS  Google Scholar 

  • Bae W, Wu CH, Kostal J, Mulchandani A, Chen W (2003) Enhanced mercury biosorption by bacterial cells with surface-displayed MerR. Appl Environ Microbiol 69:3176–3180

    PubMed  CAS  Google Scholar 

  • Bentley R, Chasteen TG (2002) Microbial methylation of metalloids: arsenic, antimony, and bismuth. Microbiol Mol Biol Rev 66:250–271. doi:10.1128/MMBR.66.2.250-271.2002

    PubMed  CAS  Google Scholar 

  • Bizily SP, Rugh CL, Meagher RB (2000) Phytodetoxification of hazardous organomercurials by genetically engineered plants. Nat Biotechnol 18:213–217. doi:10.1038/72678

    PubMed  CAS  Google Scholar 

  • Butcher BG, Deane SM, Rawlings DE (2000) The chromosomal arsenic resistance genes of Thiobacillus ferrooxidans have an unusual arrangement and confer increased arsenic and antimony resistance to Escherichia coli. Appl Environ Microbiol 66:1826–1833. doi:10.1128/AEM.66.5.1826-1833.2000

    PubMed  CAS  Google Scholar 

  • Cai J, Salmon K, DuBow MS (1998) A chromosomal ars operon homologue of Pseudomonas aeruginosa confers increased resistance to arsenic and antimony in Escherichia coli. Microbiology 144:2705–2713

    PubMed  CAS  Google Scholar 

  • Cánovas D, de Lorenzo V (2007) Osmotic stress limits arsenic hyper-tolerance in Aspergillus sp. P37. FEMS Ecol 61:258–263. doi:10.1111/j.1574-6941.2007.00344.x

    Google Scholar 

  • Canovas D, Cases I, de Lorenzo V (2003) Heavy metal tolerance and metal homeostasis in Pseudomonas putida as revealed by complete genome analysis. Environ Microbiol 5:1242–1256. doi:10.1111/j.1462-2920.2003.00463.x

    PubMed  CAS  Google Scholar 

  • Cánovas D, Vooijs R, Schat H, de Lorenzo V (2004) The role of thiol species in the hyper-tolerance of Aspergillus sp. P37 to arsenic. J Biol Chem 279:51234–51240. doi:10.1074/jbc.M408622200

    PubMed  Google Scholar 

  • Carlin A, Shi W, Dey S, Rosen BP (1995) The ars operon of Escherichia coli confers arsenical and antimonial resistance. J Bacteriol 177:981–986

    PubMed  CAS  Google Scholar 

  • Challenger F (1951) Biological methylation. Adv Enzymol Relat Subj Biochem 12:429–491. doi:10.1002/9780470122570.ch8

    PubMed  CAS  Google Scholar 

  • Cullen WR, Reimer KJ (1989) Arsenic speciation in the environment. Chem Rev 89:713–764. doi:10.1021/cr00094a002

    CAS  Google Scholar 

  • de Lorenzo V (2008) Systems biology approaches to bioremediation. Curr Opin Biotechnol 19:579–589. doi:10.1016/j.copbio.2008.10.004

    PubMed  Google Scholar 

  • Diorio C, Cai J, Marmor J, Shinder R, DuBow MS (1995) An Escherichia coli chromosomal ars operon homolog is functional in arsenic detoxification and is conserved in Gram-negative bacteria. J Bacteriol 177:2050–2056

    PubMed  CAS  Google Scholar 

  • Dombrowski PM, Long W, Farley KJ, Mahony JD, Capitani JF, Di Toro DM (2005) Thermodynamic analysis of arsenic methylation. Environ Sci Technol 39:2169–2176. doi:10.1021/es0489691

    PubMed  CAS  Google Scholar 

  • Eguchi N, Kuroda K, Endo G (1997) Metabolites of arsenic induced tetraploids and mitotic arrest in cultured cells. Arch Environ Toxicol 32:141–145. doi:10.1007/s002449900166

    CAS  Google Scholar 

  • Ellis PJ, Conrads T, Hille R, Kuhn P (2001) Crystal structure of the 100 kDa arsenite oxidase from Alcaligenes faecalis in two crystal forms at 1.64 A and 2.03 A. Structure 9:125–132. doi:10.1016/S0969-2126(01)00566-4

    PubMed  CAS  Google Scholar 

  • Essa AM, Macaskie LE, Brown NL (2002) Mechanisms of mercury bioremediation. Biochem Soc Trans 30:672–674. doi:10.1042/BST0300672

    PubMed  CAS  Google Scholar 

  • Fisher E et al (2008) Transformation of inorganic and organic arsenic by Alkaliphilus oremlandii sp. nov. strain OhILAs. Ann N Y Acad Sci 1125:230–241. doi:10.1196/annals.1419.006

    PubMed  CAS  Google Scholar 

  • Gihring TM, Banfield JF (2001) Arsenite oxidation and arsenate respiration by a new Thermus isolate. FEMS Microbiol Lett 204:335–340. doi:10.1111/j.1574-6968.2001.tb10907.x

    PubMed  CAS  Google Scholar 

  • Gihring TM, Druschel GK, McCleskey RB, Hamers RJ, Banfield JF (2001) Rapid arsenite oxidation by Thermus aquaticus and Thermus thermophilus: field and laboratory investigations. Environ Sci Technol 35:3857–3862. doi:10.1021/es010816f

    PubMed  CAS  Google Scholar 

  • Gourbal B et al (2004) Drug uptake and modulation of drug resistance in Leishmania by an aquaglyceroporin. J Biol Chem 279:31010–31017. doi:10.1074/jbc.M403959200

    PubMed  CAS  Google Scholar 

  • Hamer DH (1986) Metallothionein. Annu Rev Biochem 55:913–951

    PubMed  CAS  Google Scholar 

  • Harold FM, Baarda JR (1966) Interaction of arsenate with phosphate-transport systems in wild-type and mutant Streptococcus faecalis. J Bacteriol 91:2257–2262

    PubMed  CAS  Google Scholar 

  • Hemond HF (1995) Movement and distribution of arsenic in the Aberjona watershed. Environ Health Perspect 103(Suppl 1):35–40. doi:10.2307/3432010

    PubMed  CAS  Google Scholar 

  • Huber R, Sacher M, Vollmann A, Huber H, Rose D (2000) Respiration of arsenate and selenate by hyperthermophilic archaea. Syst Appl Microbiol 23:305–314

    PubMed  CAS  Google Scholar 

  • Jackson CR, Langner HW, Donahoe-Christiansen J, Inskeep WP, McDermott TR (2001) Molecular analysis of microbial community structure in an arsenite-oxidizing acidic thermal spring. Environ Microbiol 3:532–542. doi:10.1046/j.1462-2920.2001.00221.x

    PubMed  CAS  Google Scholar 

  • Kaise T, Hanaoka K, Tagawa S (1985) The formation of trimethylarsine oxide from arsenobetaine by biodegradation with marine microorganisms. Chemosphere 16:2551–2558. doi:10.1016/0045-6535(87)90313-4

    Google Scholar 

  • Kashyap DR, Botero LM, Franck WL, Hassett DJ, McDermott TR (2006) Complex regulation of arsenite oxidation in Agrobacterium tumefaciens. J Bacteriol 188:1081–1088. doi:10.1128/JB.188.3.1081-1088.2006

    PubMed  CAS  Google Scholar 

  • Koch I, Feldmann J, Wang L, Andrewes P, Reimer KJ, Cullen WR (1999) Arsenic in the Meager Creek hot springs environment, British Columbia, Canada. Sci Total Environ 236:101–117. doi:10.1016/S0048-9697(99)00273-9

    PubMed  CAS  Google Scholar 

  • Kostal J, Yang R, Wu CH, Mulchandani A, Chen W (2004) Enhanced arsenic accumulation in engineered bacterial cells expressing ArsR. Appl Environ Microbiol 70:4582–4587. doi:10.1128/AEM.70.8.4582-4587.2004

    PubMed  CAS  Google Scholar 

  • Krafft T, Macy JM (1998) Purification and characterization of the respiratory arsenate reductase of Chrysiogenes arsenatis. Eur J Biochem 255:647–653. doi:10.1046/j.1432-1327.1998.2550647.x

    PubMed  CAS  Google Scholar 

  • Krautler B (1990) Chemistry of methylcorrinoids related to their roles in bacterial C1 metabolism. FEMS Microbiol Rev 7:349–354

    PubMed  CAS  Google Scholar 

  • Langner HW, Jackson CR, McDermott TR, Inskeep WP (2001) Rapid oxidation of arsenite in a hot spring ecosystem, Yellowstone National Park. Environ Sci Technol 35:3302–3309

    PubMed  CAS  Google Scholar 

  • Lebrun E et al (2003) Arsenite oxidase, an ancient bioenergetic enzyme. Mol Biol Evol 20:686–693. doi:10.1093/molbev/msg071

    PubMed  CAS  Google Scholar 

  • Leist M, Casey RJ, Caridi D (2000) The management of arsenic wastes: problems and prospects. J Hazard Mater 76:125–138. doi:10.1016/S0304-3894(00)00188-6

    PubMed  CAS  Google Scholar 

  • Lin YF, Yang J, Rosen BP (2007) ArsD: an As(III) metallochaperone for the ArsAB As(III)-translocating ATPase. J Bioenerg Biomembr 39:453–458. doi:10.1007/s10863-007-9113-y

    PubMed  CAS  Google Scholar 

  • Liu Z, Carbrey JM, Agre P, Rosen BP (2004) Arsenic trioxide uptake by human and rat aquaglyceroporins. Biochem Biophys Res Commun 316:1178–1185. doi:10.1016/j.bbrc.2004.03.003

    PubMed  CAS  Google Scholar 

  • Liu Z, Sanchez MA, Jiang X, Boles E, Landfear SM, Rosen BP (2006) Mammalian glucose permease GLUT1 facilitates transport of arsenic trioxide and methylarsonous acid. Biochem Biophys Res Commun 351:424–430. doi:10.1016/j.bbrc.2006.10.054

    PubMed  CAS  Google Scholar 

  • Lovley DR, Coates JD (1997) Bioremediation of metal contamination. Curr Opin Biotechnol 8:285–289. doi:10.1016/S0958-1669(97)80005-5

    PubMed  CAS  Google Scholar 

  • Macur RE, Wheeler JT, McDermott TR, Inskeep WP (2001) Microbial populations associated with the reduction and enhanced mobilization of arsenic in mine tailings. Environ Sci Technol 35:3676–3682. doi:10.1021/es0105461

    PubMed  CAS  Google Scholar 

  • Macy JM et al (1996) Chrysiogenes arsenatis gen. nov., sp. nov., a new arsenate-respiring bacterium isolated from gold mine wastewater. Int J Syst Bacteriol 46:1153–1157

    PubMed  CAS  Google Scholar 

  • Macy JM, Santini JM, Pauling BV, O’Neill AH, Sly LI (2000) Two new arsenate/sulfate-reducing bacteria: mechanisms of arsenate reduction. Arch Microbiol 173:49–57. doi:10.1007/s002030050007

    PubMed  CAS  Google Scholar 

  • Malasarn D, Saltikov CW, Campbell KM, Santini JM, Hering JG, Newman DK (2004) arrA is a reliable marker for As(V) respiration. Science 306:455. doi:10.1126/science.1102374

    PubMed  CAS  Google Scholar 

  • Malasarn D, Keeffe JR, Newman DK (2008) Characterization of the arsenate respiratory reductase from Shewanella sp. strain ANA-3. J Bacteriol 190:135–142. doi:10.1128/JB.01110-07

    PubMed  CAS  Google Scholar 

  • Mass MJ et al (2001) Methylated trivalent arsenic species are genotoxic. Chem Res Toxicol 14:355–361. doi:10.1021/tx000251l

    PubMed  CAS  Google Scholar 

  • Meng YL, Liu Z, Rosen BP (2004) As(III) and Sb(III) uptake by GlpF and efflux by ArsB in Escherichia coli. J Biol Chem 279:18334–18341. doi:10.1074/jbc.M400037200

    PubMed  CAS  Google Scholar 

  • Merrifield ME, Ngu T, Stillman MJ (2004) Arsenic binding to Fucus vesiculosus metallothionein. Biochem Biophys Res Commun 324:127–132. doi:10.1016/j.bbrc.2004.09.027

    PubMed  CAS  Google Scholar 

  • Messens J, Silver S (2006) Arsenate reduction: thiol cascade chemistry with convergent evolution. J Mol Biol 362:1–17. doi:10.1016/j.jmb.2006.07.002

    PubMed  CAS  Google Scholar 

  • Michalke K, Wickenheiser EB, Mehring M, Hirner AV, Hensel R (2000) Production of volatile derivatives of metal(loid)s by microflora involved in anaerobic digestion of sewage sludge. Appl Environ Microbiol 66:2791–2796. doi:10.1128/AEM.66.7.2791-2796.2000

    PubMed  CAS  Google Scholar 

  • Moore AJ, Kukuk PF (2002) Quantitative genetic analysis of natural populations. Nat Rev Genet 3:971–978. doi:10.1038/nrg951

    PubMed  CAS  Google Scholar 

  • Moore MM, Harrington-Brock K, Doerr CL (1997) Relative genotoxic potency of arsenic and its methylated metabolites. Mutat Res 386:279–290

    PubMed  CAS  Google Scholar 

  • Muller D, Lievremont D, Simeonova DD, Hubert JC, Lett MC (2003) Arsenite oxidase aox genes from a metal-resistant beta-proteobacterium. J Bacteriol 185:135–141. doi:10.1128/JB.185.1.135-141.2003

    PubMed  CAS  Google Scholar 

  • Newman D, Beveridge T, Morel F (1997a) Precipitation of arsenic trisulfide by Desulfotomaculum auripigmentum. Appl Environ Microbiol 63:2022–2028

    PubMed  CAS  Google Scholar 

  • Newman DK et al (1997b) Dissimilatory arsenate and sulfate reduction in Desulfotomaculum auripigmentum sp. nov. Arch Microbiol 168:380–388. doi:10.1007/s002030050512

    PubMed  CAS  Google Scholar 

  • Niggemyer A, Spring S, Stackebrandt E, Rosenzweig RF (2001) Isolation and characterization of a novel as(v)-reducing bacterium: implications for arsenic mobilization and the genus Desulfitobacterium. Appl Environ Microbiol 67:5568–5580. doi:10.1128/AEM.67.12.5568-5580.2001

    PubMed  CAS  Google Scholar 

  • Nordstrom DK (2002) Worldwide occurrences of arsenic in ground water. Science 296:2143–2145. doi:10.1126/science.1072375

    PubMed  CAS  Google Scholar 

  • Notti A, Fattorini D, Razzetti EM, Regoli F (2007) Bioaccumulation and biotransformation of arsenic in the Mediterranean polychaete Sabella spallanzanii: experimental observations. Environ Toxicol Chem 26:1186–1191. doi:10.1897/06-362R.1

    PubMed  CAS  Google Scholar 

  • Oremland RS, Stolz JF (2003) The ecology of arsenic. Science 300:939–944. doi:10.1126/science.1081903

    PubMed  CAS  Google Scholar 

  • Oremland RS, Stolz JF (2005) Arsenic, microbes and contaminated aquifers. Trends Microbiol 13:45–49. doi:10.1016/j.tim.2004.12.002

    PubMed  CAS  Google Scholar 

  • Oremland RS, Hoeft SE, Santini JM, Bano N, Hollibaugh RA, Hollibaugh JT (2002) Anaerobic oxidation of arsenite in Mono Lake water and by a facultative, arsenite-oxidizing chemoautotroph, strain MLHE-1. Appl Environ Microbiol 68:4795–4802. doi:10.1128/AEM.68.10.4795-4802.2002

    PubMed  CAS  Google Scholar 

  • Otte ML, Kearns CC, Doyle MO (1995) Accumulation of arsenic and zinc in the rhizosphere of wetland plants. Bull Environ Contam Toxicol 55:154–161. doi:10.1007/BF00212403

    PubMed  CAS  Google Scholar 

  • Perez-Jimenez JR, DeFraia C, Young LY (2005) Arsenate respiratory reductase gene (arrA) for Desulfosporosinus sp. strain Y5. Biochem Biophys Res Commun 338:825–829. doi:10.1016/j.bbrc.2005.10.011

    PubMed  CAS  Google Scholar 

  • Pott WA, Benjamin SA, Yang RS (2001) Pharmacokinetics, metabolism, and carcinogenicity of arsenic. Rev Environ Contam Toxicol 169:165–214

    PubMed  CAS  Google Scholar 

  • Prithivirajsingh S, Mishra SK, Mahadevan A (2001a) Detection and analysis of chromosomal arsenic resistance in Pseudomonas fluorescens strain MSP3. Biochem Biophys Res Commun 280:1393–1401. doi:10.1006/bbrc.2001.4287

    PubMed  CAS  Google Scholar 

  • Prithivirajsingh S, Mishra SK, Mahadevan A (2001b) Functional analysis of a chromosomal arsenic resistance operon in Pseudomonas fluorescens strain MSP3. Mol Biol Rep 28:63–72. doi:10.1023/A:1017950207981

    PubMed  CAS  Google Scholar 

  • Qin J, Rosen BP, Zhang Y, Wang G, Franke S, Rensing C (2006) Arsenic detoxification and evolution of trimethylarsine gas by a microbial arsenite S-adenosylmethionine methyltransferase. Proc Natl Acad Sci USA 103:2075–2080. doi:10.1073/pnas.0506836103

    PubMed  CAS  Google Scholar 

  • Quinn JP, McMullan G (1995) Carbon-arsenic bond cleavage by a newly isolated gram-negative bacterium, strain ASV2. Microbiology 141:721–725

    Article  PubMed  CAS  Google Scholar 

  • Ramirez-Solis A, Mukopadhyay R, Rosen BP, Stemmler TL (2004) Experimental and theoretical characterization of arsenite in water: insights into the coordination environment of As-O. Inorg Chem 43:2954–2959. doi:10.1021/ic0351592

    PubMed  CAS  Google Scholar 

  • Rosen P (1971) Theoretical significance of arsenic as a carcinogen. J Theor Biol 32:425–426. doi:10.1016/0022-5193(71)90178-0

    PubMed  CAS  Google Scholar 

  • Rosen BP (1995) Resistance mechanisms to arsenicals and antimonials. J Basic Clin Physiol Pharmacol 6:251–263

    PubMed  CAS  Google Scholar 

  • Rosen BP (2002) Biochemistry of arsenic detoxification. FEBS Lett 529:86–92. doi:10.1016/S0014-5793(02)03186-1

    PubMed  CAS  Google Scholar 

  • Rosen P, Liu Z (2008) Transport pathways for arsenic and selenium: a minireview. Environ Int. doi:10.1016/j.envint.2008.07.023

    PubMed  Google Scholar 

  • Rosenberg H, Gerdes RG, Chegwidden K (1977) Two systems for the uptake of phosphate in Escherichia coli. J Bacteriol 131:505–511

    PubMed  CAS  Google Scholar 

  • Rugh CL, Senecoff JF, Meagher RB, Merkle SA (1998) Development of transgenic yellow poplar for mercury phytoremediation. Nat Biotechnol 16:925–928. doi:10.1038/nbt1098-925

    PubMed  CAS  Google Scholar 

  • Ruokolainen M, Pantsar-Kallio M, Haapa A, Kairesalo T (2000) Leaching, runoff and speciation of arsenic in a laboratory mesocosm. Sci Total Environ 258:139–147. doi:10.1016/S0048-9697(00)00521-0

    PubMed  CAS  Google Scholar 

  • Santini JM, vanden Hoven RN (2004) Molybdenum-containing arsenite oxidase of the chemolithoautotrophic arsenite oxidizer NT-26. J Bacteriol 186:1614–1619. doi:10.1128/JB.186.6.1614-1619.2004

    PubMed  CAS  Google Scholar 

  • Santini JM, Sly LI, Schnagl RD, Macy JM (2000) A new chemolithoautotrophic arsenite-oxidizing bacterium isolated from a gold mine: phylogenetic, physiological, and preliminary biochemical studies. Appl Environ Microbiol 66:92–97

    PubMed  CAS  Google Scholar 

  • Sauge-Merle S, Cuine S, Carrier P, Lecomte-Pradines C, Luu DT, Peltier G (2003) Enhanced toxic metal accumulation in engineered bacterial cells expressing Arabidopsis thaliana phytochelatin synthase. Appl Environ Microbiol 69:490–494. doi:10.1128/AEM.69.1.490-494.2003

    PubMed  CAS  Google Scholar 

  • Schmoger ME, Oven M, Grill E (2000) Detoxification of arsenic by phytochelatins in plants. Plant Physiol 122:793–801. doi:10.1104/pp.122.3.793

    PubMed  CAS  Google Scholar 

  • Senn DB, Hemond HF (2002) Nitrate controls on iron and arsenic in an urban lake. Science 296:2373–2376. doi:10.1126/science.1072402

    PubMed  CAS  Google Scholar 

  • Shariatpanahi M, Anderson AC, Abdelghani AA, Englande AJ, Hughes J, Wilkinson RF (1981) Biotransformation of the pesticide sodium arsenate. J Environ Sci Health B 16:35–47

    PubMed  CAS  Google Scholar 

  • Silver S (1998) Genes for all metals-a bacterial view of the periodic table. The 1996 Thom Award Lecture. J Ind Microbiol Biotechnol 20:1–12

    PubMed  CAS  Google Scholar 

  • Silver S, Misra TK (1984) Bacterial transformations of and resistances to heavy metals. Basic Life Sci 28:23–46

    PubMed  CAS  Google Scholar 

  • Silver S, Phung LT (1996) Bacterial heavy metal resistance: new surprises. Annu Rev Microbiol 50:753–789. doi:10.1146/annurev.micro.50.1.753

    PubMed  CAS  Google Scholar 

  • Silver S, Phung LT (2005) Genes and enzymes involved in bacterial oxidation and reduction of inorganic arsenic. Appl Environ Microbiol 71:599–608. doi:10.1128/AEM.71.2.599-608.2005

    PubMed  CAS  Google Scholar 

  • Singh N, Kumar D, Sahu AP (2007) Arsenic in the environment: effects on human health and possible prevention. J Environ Biol 28:359–365

    PubMed  CAS  Google Scholar 

  • Singh S, Mulchandani A, Chen W (2008) Highly selective and rapid arsenic removal by metabolically engineered Escherichia coli cells expressing Fucus vesiculosus metallothionein. Appl Environ Microbiol 74:2924–2927

    PubMed  CAS  Google Scholar 

  • Smith AH, Lopipero PA, Bates MN, Steinmaus CM (2002) Arsenic epidemiology and drinking water standards. Science 296:2145–2146. doi:10.1126/science.1072896

    PubMed  CAS  Google Scholar 

  • Stolz JF, Oremland RS (1999) Bacterial respiration of arsenic and selenium. FEMS Microbiol Rev 23:615–627. doi:10.1111/j.1574-6976.1999.tb00416.x

    PubMed  CAS  Google Scholar 

  • Stolz JF, Ellis DJ, Blum JS, Ahmann D, Lovley DR, Oremland RS (1999) Sulfurospirillum barnesii sp. nov. and Sulfurospirillum arsenophilum sp. nov., new members of the Sulfurospirillum clade of the epsilon Proteobacteria. Int J Syst Bacteriol 49:1177–1180

    Article  PubMed  CAS  Google Scholar 

  • Stolz JF, Basu P, Santini JM, Oremland RS (2006) Arsenic and selenium in microbial metabolism. Annu Rev Microbiol 60:107–130. doi:10.1146/annurev.micro.60.080805.142053

    PubMed  CAS  Google Scholar 

  • Stupperich E (1993) Recent advances in elucidation of biological corrinoid functions. FEMS Microbiol Rev 12:349–365. doi:10.1111/j.1574-6976.1993.tb00027.x

    PubMed  CAS  Google Scholar 

  • Suzuki K, Wakao N, Sakurai Y, Kimura T, Sakka K, Ohmiya K (1997) Transformation of Escherichia coli with a large plasmid of Acidiphilium multivorum AIU 301 encoding arsenic resistance. Appl Environ Microbiol 63:2089–2091

    PubMed  CAS  Google Scholar 

  • Suzuki K, Wakao N, Kimura T, Sakka K, Ohmiya K (1998) Expression and regulation of the arsenic resistance operon of Acidiphilium multivorum AIU 301 plasmid pKW301 in Escherichia coli. Appl Environ Microbiol 64:411–418

    PubMed  CAS  Google Scholar 

  • Switzer Blum J, Burns Bindi A, Buzzelli J, Stolz JF, Oremland RS (1998) Bacillus arsenicoselenatis, sp. nov., and Bacillus selenitireducens, sp. nov.: two haloalkaliphiles from Mono Lake, California that respire oxyanions of selenium and arsenic. Arch Microbiol 171:19–30. doi:10.1007/s002030050673

    PubMed  CAS  Google Scholar 

  • Takai K, Hirayama H, Sakihama Y, Inagaki F, Yamato Y, Horikoshi K (2002) Isolation and metabolic characteristics of previously uncultured members of the order Aquificales in a subsurface gold mine. Appl Environ Microbiol 68:3046–3054. doi:10.1128/AEM.68.6.3046-3054.2002

    PubMed  CAS  Google Scholar 

  • Tamaki S, Frankenberger WT Jr (1992) Environmental biochemistry of arsenic. Rev Environ Contam Toxicol 124:79–110

    PubMed  CAS  Google Scholar 

  • Turpeinen R, Pantsar-Kallio M, Kairesalo T (2002) Role of microbes in controlling the speciation of arsenic and production of arsines in contaminated soils. Sci Total Environ 285:133–145. doi:10.1016/S0048-9697(01)00903-2

    PubMed  CAS  Google Scholar 

  • vanden Hoven RN, Santini JM (2004) Arsenite oxidation by the heterotroph Hydrogenophaga sp. str. NT-14: the arsenite oxidase and its physiological electron acceptor. Biochim Biophys Acta 1656:148–155

    Google Scholar 

  • Vorontsov II et al (2007) Crystal structure of an apo form of Shigella flexneri ArsH protein with an NADPH-dependent FMN reductase activity. Protein Sci 16:2483–2490

    PubMed  CAS  Google Scholar 

  • Weeger W et al (1999) Oxidation of arsenite to arsenate by a bacterium isolated from an aquatic environment. Biometals 12:141–149

    PubMed  CAS  Google Scholar 

  • Willsky GR, Malamy MH (1980) Characterization of two genetically separable inorganic phosphate transport systems in Escherichia coli. J Bacteriol 144:356–365

    PubMed  CAS  Google Scholar 

  • Wu J, Rosen BP (1993) Metalloregulated expression of the ars operon. J Biol Chem 268:52–58

    PubMed  CAS  Google Scholar 

  • Xu C, Zhou T, Kuroda M, Rosen BP (1998) Metalloid resistance mechanisms in prokaryotes. J Biochem (Tokyo) 123:16–23

    CAS  Google Scholar 

  • Yamanaka K, Ohba H, Hasegawa A, Sawamura R, Okada S (1989) Mutagenicity of dimethylated metabolites of inorganic arsenics. Chem Pharm Bull (Tokyo) 37:2753–2756

    CAS  Google Scholar 

  • Yamanaka K et al (1997) Metabolic methylation is a possible genotoxicity-enhancing process of inorganic arsenics. Mutat Res 394:95–101

    PubMed  CAS  Google Scholar 

  • Yamauchi H, Kaise T, Takahashi K, Yamamura Y (1990) Toxicity and metabolism of trimethylarsine in mice and hamsters. Fundam Appl Toxicol 14:399–407

    PubMed  CAS  Google Scholar 

  • Ye J, Yang HC, Rosen BP, Bhattacharjee H (2007) Crystal structure of the flavoprotein ArsH from Sinorhizobium meliloti. FEBS Lett 581:3996–4000

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The work in Authors’ Laboratory is funded by contracts of the 7th Framework Programme of the European Union and grants of the Spanish Ministery of Science and Innovation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Víctor de Lorenzo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Páez-Espino, D., Tamames, J., de Lorenzo, V. et al. Microbial responses to environmental arsenic. Biometals 22, 117–130 (2009). https://doi.org/10.1007/s10534-008-9195-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10534-008-9195-y

Keywords

Navigation