Skip to main content

Advertisement

Log in

MR-determined metabolic phenotype of breast cancer in prediction of lymphatic spread, grade, and hormone status

  • Published:
Breast Cancer Research and Treatment Aims and scope Submit manuscript

Abstract

The purpose of the study was to evaluate the use of metabolic phenotype, described by high-resolution magic angle spinning magnetic resonance spectroscopy (HR MAS MRS), as a tool for prediction of histological grade, hormone status, and axillary lymphatic spread in breast cancer patients. Biopsies from breast cancer (n = 91) and adjacent non-involved tissue (n = 48) were excised from patients (n = 77) during surgery. HR MAS MR spectra of intact samples were acquired. Multivariate models relating spectral data to histological grade, lymphatic spread, and hormone status were designed. The multivariate methods applied were variable reduction by principal component analysis (PCA) or partial least-squares regression-uninformative variable elimination (PLS-UVE), and modelling by PLS, probabilistic neural network (PNN), or cascade correlation neural network. In the end, model verification by prediction of blind samples (n = 12) was performed. Validation of PNN training resulted in sensitivity and specificity ranging from 83 to 100% for all predictions. Verification of models by blind sample testing showed that hormone status was well predicted by both PNN and PLS (11 of 12 correct), lymphatic spread was best predicted by PLS (8 of 12), whereas PLS-UVE PNN was the best approach for predicting grade (9 of 12 correct). MR-determined metabolic phenotype may have a future role as a supplement for clinical decision-making-concerning adjuvant treatment and the adaptation to more individualised treatment protocols.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Cancer in Norway 2001 (2004) Cancer Registry of Norway. Institute of Population-based Cancer Research, Oslo, Norway

    Google Scholar 

  2. Cancer in Norway 2003 (2005) Cancer Registry of Norway. Institute of Population-based Cancer Research, Oslo, Norway

    Google Scholar 

  3. Botha JL, Bray F, Sankila R, Parkin DM (2003) Breast cancer incidence and mortality trends in 16 European countries. Eur J Cancer 39:1718–1729

    Article  PubMed  CAS  Google Scholar 

  4. Negendank W (1992) Studies of human tumors by MRS: a review. NMR Biomed 5:303–324

    PubMed  CAS  Google Scholar 

  5. Bakken IJ, Axelson D, Kvistad KA, Gribbestad IS (2001) Classification of in vivo 1H MR spectra from breast tissue using artificial neural networks. Anticancer Res 21:1481–1486

    PubMed  CAS  Google Scholar 

  6. Bolan PJ, Meisamy S, Baker E, Lin J, Emory T, Nelson M, Everson L, Yee D, Garwood M (2003) In vivo quantification of choline compounds in the breast with 1H MR spectroscopy. Magn Reson Med 50:1134–1143

    Article  PubMed  CAS  Google Scholar 

  7. Jagannathan NR, Kumar M, Seenu V, Coshic O, Dwivedi SN, Julka P, Srivastava A, Rath G (2001) Evaluation of total choline from in vivo volume localized proton MR spectroscopy and its response to neoadjuvant chemotherapy in locally advanced breast cancer. Br J Cancer 84:1016–1022

    Article  PubMed  CAS  Google Scholar 

  8. Kim JK, Park S, Lee H, Lee Y, Sung N, Chung D, Kim O (2003) In vivo 1H-MRS evaluation of malignant and benign breast diseases. Breast 12:179–182

    Article  PubMed  Google Scholar 

  9. Kvistad KA, Bakken I, Gribbestad I, Ehrnhom B, Lundgren S, Fjøsne H, Haraldseth O (2001) Characterization of neoplastic and normal human breast tissues with in vivo (1)H MR spectroscopy. J Magn Reson Imaging 10:159–164

    Article  Google Scholar 

  10. Stanwell P, Gluch L, Clark D, Tomanek B, Baker L, Giuffre B, Lean C, Malycha P, Mountford C (2005) Specificity of choline metabolites for in vivo diagnosis of breast cancer using 1H MRS at 1.5 T. Eur Radiol 15:1037–1043

    Article  PubMed  Google Scholar 

  11. Gribbestad IS, Singstad TE, Nilsen G, Fjosne HE, Engan T, Haugen OA, Rinck PA (1998) In vivo H-1 MRS of normal breast and breast tumors using a dedicated double breast coil. J Magn Reson Imaging 8:1191–1197

    Article  PubMed  CAS  Google Scholar 

  12. Sitter B, Sonnewald U, Spraul M, Fjosne HE, Gribbestad IS (2002) High-resolution magic angle spinning MRS of breast cancer tissue. NMR Biomed 15:327–337

    Article  PubMed  CAS  Google Scholar 

  13. Griffin JL, Shockcor JP (2004) Metabolic profiles of cancer cells. Nat Rev Cancer 4:551–561

    Article  PubMed  CAS  Google Scholar 

  14. Bathen TF, Engan T, Krane J, Axelson D (2000) Analysis and classification of proton NMR spectra of lipoprotein fractions from healthy volunteers and patients with cancer or CHD. Anticancer Res 20:2393–2408

    PubMed  CAS  Google Scholar 

  15. Sitter B, Bathen T, Hagen B, Arentz C, Skjeldestad F, Gribbestad I (2004) Cervical cancer tissue characterized by high-resolution magic angle spinning MR spectroscopy. Magma 16:174–181

    Article  PubMed  CAS  Google Scholar 

  16. Sitter B, Autti T, Tyynela J, Sonnewald U, Bathen T, Puranen J, Santavuori P, Haltia M, Paetau A, Polvokoski T, Gribbestad I, Häkkinen A (2004) High-resolution magic angle spinning and 1H magnetic resonance spectroscopy reveal significantly altered neuronal metabolite profiles in CLN1 but not in CLN3. J Neurosci Res 77:762–769

    Article  PubMed  CAS  Google Scholar 

  17. Tessem M, Bathen TF, Cejkova J, Midelfart A (2005) Effect of UV-A and UV-B irradiation on the metabolic profile of aqueous humor in rabbits analyzed by 1H NMR spectroscopy. Invest Ophthalmol Vis Sci 46:776–781

    Article  PubMed  Google Scholar 

  18. Bloom HJG, Richardson W (1957) Histological grading and prognosis in breast cancer: a study of 1409 cases of which 359 have been followed for 15 years. Br J Cancer 11:359–377

    PubMed  CAS  Google Scholar 

  19. Elston CW, Ellios I (1991) Pathological prognostic factors in breast cancer. I. The value of histological grade in breast cancer: experience from a large study with long-term follow-up. Histopathology 19:403–410

    Article  PubMed  CAS  Google Scholar 

  20. Forshed J, Schuppe-Koistinen I, Jacobsson S (2003) Peak alignment of NMR signals by means of a genetic algorithm. Anal Chim Acta 487:189–199

    Article  CAS  Google Scholar 

  21. Lee GC, Woodruff D (2004) Beam search for peak alignment of NMR signals. Anal Chim Acta 513:413–416

    Article  CAS  Google Scholar 

  22. Kennard RW, Stone L (1969) Computer aided design of experiments. Technometrics 11:137–148

    Article  Google Scholar 

  23. de Nord OE (1994) The influence of data preprocessing on the robustness and parsimony of multivariate calibration models. Chem Intell Lab Syst 23:65–70

    Article  Google Scholar 

  24. Livingstone DJ, Manallack D (1993) Statistics using neural networks: chance effects. J Med Chem 36:1295–1297

    Article  PubMed  CAS  Google Scholar 

  25. Seasholtz MB, Kowalski B (1993) The parsimony principle applied to multivariate calibration. Anal Chim Acta 277:165–177

    Article  CAS  Google Scholar 

  26. Martens H, Naes T (1991) Assessment, validation and choice of calibration method. In: Multivariate calibration. Wiley, Chichester, pp 237–266

  27. Centner V, Massart D, de Nord O, de Jong S, Vandegniste B, Sterna C (1996) Elimination of uninformative variables for multivariate calibration. Anal Chem 68:3851–3858

    Article  CAS  Google Scholar 

  28. Specht DF (1990) Probabilistic neural networks. Neural Networks 3:109–118

    Article  Google Scholar 

  29. Lucasius CB, Kateman G (1993) Understanding and using genetic algorithms. Part 1. Concepts, properties and context. Chem Intell Lab Syst 19:1–33

    Article  CAS  Google Scholar 

  30. Zweig MH, Campbell G (1993) Receiver-operating characteristic (ROC) plots: a fundamental evaluation tool in clinical medicine. Clin Chem 39:561–577

    PubMed  CAS  Google Scholar 

  31. Fahlman SE, Lebiere C (1990) The cascade-correlation learning architecture. In: Touretzky DS (eds) Advances in neural information processing systems 2. Kaufmann, Los Altos, CA, pp 524–532

    Google Scholar 

  32. Hoehfeld M, Fahlman S (1992) Learning with limited numerical precision using the cascade correlation learning algorithm. IEEE Trans Neural Netw 3:602–611

    Article  Google Scholar 

  33. Gribbestad IS, Sitter B, Lundgren S, Krane J, Axelson D (1999) Metabolite composition in breast tumors examined by proton nuclear magnetic resonance spectroscopy. Anticancer Res 19:1737–1746

    PubMed  CAS  Google Scholar 

  34. Mountford CE, Somorjai RL, Malycha P, Gluch L, Lean C, Russell P, Barraclough B, Gillett D, Himmelreich U, Dolenko B, Nikulin AE, Smith ICP (2001) Diagnosis and prognosis of breast cancer by magnetic resonance spectroscopy of fine-needle aspirates analysed using a statistical classification strategy. Br J Surg 88:1234–1240

    Article  PubMed  CAS  Google Scholar 

  35. Noguchi M (2002) Therapeutic relevance of breast cancer micrometastases in sentinel lymph nodes. Br J Surg 89:1505–1515

    Article  PubMed  CAS  Google Scholar 

  36. Lean C, Doran S, Somorjai RL, Malycha P, Clark D, Himmelreich U, Bourne R, Dolenko B, Nikulin AE, Mountford C (2004) Determination of grade and receptor status from the primary breast lesion by magnetic resonance spectroscopy. Technol Cancer Res Treat 3:551–556

    PubMed  Google Scholar 

  37. Baumann K, Albert H, von Koff M (2002) A systematic evaluation of the benefits and hazards of variable selection in latent variable regression. Part I. Search algorithm, theory and simulations. J Chemom 16:339–350

    Article  CAS  Google Scholar 

  38. Yarden Y, Baselga J, Miles D (2004) Molecular approach to breast cancer treatment. Semin Oncol 31:6–13

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgment

This work was sponsored by the Norwegian Women’s Public Health Association, Trondheim, Norway.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tone F. Bathen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bathen, T.F., Jensen, L.R., Sitter, B. et al. MR-determined metabolic phenotype of breast cancer in prediction of lymphatic spread, grade, and hormone status. Breast Cancer Res Treat 104, 181–189 (2007). https://doi.org/10.1007/s10549-006-9400-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10549-006-9400-z

Keywords

Navigation