Skip to main content

Advertisement

Log in

Unmasking of epigenetically silenced genes reveals DNA promoter methylation and reduced expression of PTCH in breast cancer

  • Preclinical Study
  • Published:
Breast Cancer Research and Treatment Aims and scope Submit manuscript

Abstract

A pharmacological-based global screen for epigenetically silenced tumor suppressor genes was performed in MCF-7 and MDA-MB-231 breast cancer cells. Eighty-one genes in MCF-7 cells and 131 in MDA-MB-231 cells were identified, that had low basal expression and were significantly upregulated following treatment. Eighteen genes were studied for methylation and/or expression in breast cancer; PTCH, the receptor for the hedgehog (Hh) pathway and a known tumor suppressor gene, was selected for further analysis. Methylation of the PTCH promoter was found in MCF-7 cells and in breast cancer samples, and correlated with low PTCH expression. Immunohistochemical analysis of breast tissue arrays revealed high expression of PTCH in normal breast compared to ductal carcinomas in situ (DCIS) and invasive ductal carcinomas; furthermore, association was found between PTCH expression and favorable prognostic factors. PTCH is an inhibitor of the Hh pathway, and its silencing activates the pathway and promotes growth. Indeed, high activity of the Hh pathway was identified in MCF-7 cells and overexpression of PTCH inhibited the pathway. Moreover, treatment with cyclopamine, an inhibitor of the pathway, reduced cell growth and slowed the cell cycle in these cells. Thus, unmasking of epigenetic silencing in breast cancer enabled us to discover a large number of candidate tumor suppressor genes. Further analysis suggested a role of one of these genes, PTCH, in breast cancer tumorigenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Widschwendter M, Jones PA (2002) DNA methylation and breast carcinogenesis. Oncogene 21:5462–5482

    Article  PubMed  CAS  Google Scholar 

  2. Szyf M, Pakneshan P, Rabbani SA (2004) DNA methylation and breast cancer. Biochem Pharmacol 68:1187–1197

    Article  PubMed  CAS  Google Scholar 

  3. Ottaviano YL, Issa JP, Parl FF, Smith HS, Baylin SB, Davidson NE (1994) Methylation of the estrogen receptor gene CpG island marks loss of estrogen receptor expression in human breast cancer cells. Cancer Res 54:2552–2555

    PubMed  CAS  Google Scholar 

  4. Christman JK (2002) 5-Azacytidine and 5-aza-2′-deoxycytidine as inhibitors of DNA methylation: mechanistic studies and their implications for cancer therapy. Oncogene 21:5483–5485

    Article  PubMed  CAS  Google Scholar 

  5. Villar-Garea A, Esteller M (2004) Histone deacetylase inhibitors: understanding a new wave of anticancer agents. Int J Cancer 112:171–178

    Article  PubMed  CAS  Google Scholar 

  6. Cameron EE, Bachman KE, Myohanen S, Herman JG, Baylin SB (1999) Synergy of demethylation and histone deacetylase inhibition in the re-expression of genes silenced in cancer. Nat Genet 21:103–107

    Article  PubMed  CAS  Google Scholar 

  7. Suzuki H, Gabrielson E, Chen W, Anbazhagan R, van Engeland M, Weijenberg MP et al (2002) A genomic screen for genes upregulated by demethylation and histone deacetylase inhibition in human colorectal cancer. Nat Genet 31:141–149

    Article  PubMed  CAS  Google Scholar 

  8. Yamashita K, Upadhyay S, Osada M, Hoque MO, Xiao Y, Mori M et al (2002) Pharmacologic unmasking of epigenetically silenced tumor suppressor genes in esophageal squamous cell carcinoma. Cancer Cell 2:485–495

    Article  PubMed  CAS  Google Scholar 

  9. Tokumaru Y, Yamashita K, Osada M, Nomoto S, Sun DI, Xiao Y et al (2004) Inverse correlation between cyclin A1 hypermethylation and p53 mutation in head and neck cancer identified by reversal of epigenetic silencing. Cancer Res 64:5982–5987

    Article  PubMed  CAS  Google Scholar 

  10. Lodygin D, Epanchintsev A, Menssen A, Diebold J, Hermeking H (2005) Functional epigenomics identifies genes frequently silenced in prostate cancer. Cancer Res 65:4218–4227

    Article  PubMed  CAS  Google Scholar 

  11. Takai N, Kawamata N, Walsh CS, Gery S, Desmond JC, Whittaker S et al (2005) Discovery of epigenetically masked tumor suppressor genes in endometrial cancer. Mol Cancer Res 3:261–269

    Article  PubMed  CAS  Google Scholar 

  12. Lacroix M, Leclercq G (2004) Relevance of breast cancer cell lines as models for breast tumours: an update. Breast Cancer Res Treat 83:249–289

    Article  PubMed  CAS  Google Scholar 

  13. Beachy PA, Karhadkar SS, Berman DM (2004) Tissue repair and stem cell renewal in carcinogenesis. Nature 432:324–331

    Article  PubMed  CAS  Google Scholar 

  14. Lewis MT, Veltmaat JM (2004) Next stop, the twilight zone: hedgehog network regulation of mammary gland development. J Mammary Gland Biol Neoplasia 9:165–181

    Article  PubMed  Google Scholar 

  15. Cohen MM Jr (2005) The hedgehog signaling network. Am J Med Genet 123:5–28

    Google Scholar 

  16. Hahn H, Wicking C, Zaphiropoulous PG, Gailani MR, Shanley S, Chidambaram A et al (1996) Mutations of the human homolog of Drosophila patched in the nevoid basal cell carcinoma syndrome. Cell 1996:841–851

    Article  Google Scholar 

  17. Denef N, Neubuser D, Perez L, Cohen SM (2000) Hedgehog induces opposite changes in turnover and subcellular localization of patched and smoothened. Cell 102:521–531

    Article  PubMed  CAS  Google Scholar 

  18. Taipale J, Cooper MK, Maiti T, Beachy PA (2002) Patched acts catalytically to suppress the activity of Smoothened. Nature 418:892–897

    Article  PubMed  CAS  Google Scholar 

  19. Berman DM, Karhadkar SS, Hallahan AR, Pritchard JI, Eberhart CG, Watkins DN et al (2002) Medulloblastoma growth inhibition by hedgehog pathway blockade. Science 297:1559–1561

    Article  PubMed  CAS  Google Scholar 

  20. Watkins DN, Berman DM, Burkholder SG, Wang B, Beachy PA, Baylin SB (2003) Hedgehog signalling within airway epithelial progenitors and in small-cell lung cancer. Nature 422:313–317

    Article  PubMed  CAS  Google Scholar 

  21. Thayer SP, di Magliano MP, Heiser PW, Nielsen CM, Roberts DJ, Lauwers GY et al (2003) Hedgehog is an early and late mediator of pancreatic cancer tumorigenesis. Nature 425:851–856

    Article  PubMed  CAS  Google Scholar 

  22. Berman DM, Karhadkar SS, Maitra A, Montes De Oca R, Gerstenblith MR, Briggs K et al (2003) Widespread requirement for Hedgehog ligand stimulation in growth of digestive tract tumours. Nature 425:846–851

    Article  PubMed  CAS  Google Scholar 

  23. Oniscu A, James RM, Morris RG, Bader S, Malcomson RD, Harrison DJ (2004) Expression of Sonic hedgehog pathway genes is altered in colonic neoplasia. J Pathol 203:909–917

    Article  PubMed  CAS  Google Scholar 

  24. Sanchez P, Hernandez AM, Stecca B, Kahler AJ, DeGueme AM, Barrett A et al (2004) Inhibition of prostate cancer proliferation by interference with Sonic Hedgehog-Gli1 signaling. Proc Natl Acad Sci U S A 101:12561–12566

    Article  PubMed  CAS  Google Scholar 

  25. Karhadkar SS, Bova GS, Abdallah N, Dhara S, Gardner D, Maitra A et al (2004) Hedgehog signalling in prostate regeneration, neoplasia and metastasis. Nature 431:707–712

    Article  PubMed  CAS  Google Scholar 

  26. Sheng T, Li C, Zhang X, Chi S, He N, Chen K et al (2004) Activation of the hedgehog pathway in advanced prostate cancer. Mol Cancer 3:29

    Article  PubMed  CAS  Google Scholar 

  27. Calzada-Wack J, Kappler R, Schnitzbauer U, Richter T, Nathrath M, Rosemann M et al (2002) Unbalanced overexpression of the mutant allele in murine Patched mutants. Carcinogenesis 23:727–733

    Article  PubMed  CAS  Google Scholar 

  28. Uhmann A, Ferch U, Bauer R, Tauber S, Arziman Z, Chen C et al (2005) A model for PTCH1/Ptch1-associated tumors comprising mutational inactivation, gene silencing. Int J Oncol 27:1567–1575

    PubMed  CAS  Google Scholar 

  29. Toyota M, Kopecky KJ, Toyota MO, Jair KW, Willman CL, Issa JP (2001) Methylation profiling in acute myeloid leukemia. Blood 97:2823–2829

    Article  PubMed  CAS  Google Scholar 

  30. Lewis MT, Ross S, Strickland PA, Sugnet CW, Jimenez E, Scott MP et al (1999) Defects in mouse mammary gland development caused by conditional haploinsufficiency of Patched-1. Development 126:5181–5193

    PubMed  CAS  Google Scholar 

  31. Lewis MT, Ross S, Strickland PA, Sugnet CW, Jimenez E, Hui C et al (2001) The Gli2 transcription factor is required for normal mouse mammary gland development. Dev Biol 238:133–144

    Article  PubMed  CAS  Google Scholar 

  32. Chang-Claude J, Dunning A, Schnitzbauer U, Galmbacher P, Tee L, Wjst M et al (2003) The patched polymorphism Pro1315Leu (C3944T) may modulate the association between use of oral contraceptives and breast cancer risk. Int J Cancer 103:779–783

    Article  PubMed  CAS  Google Scholar 

  33. Xie J, Johnson RL, Zhang X, Bare JW, Waldman FM, Cogen PH et al (1997) Mutations of the PATCHED gene in several types of sporadic extracutaneous tumors. Cancer Res 57:2369–2372

    PubMed  CAS  Google Scholar 

  34. Oro AE, Higgins KM, Hu Z, Bonifas JM, Epstein EH Jr, Scott MP (1997) Basal cell carcinomas in mice overexpressing sonic hedgehog. Science 276:817–821

    Article  PubMed  CAS  Google Scholar 

  35. Kubo M, Nakamura M, Tasaki A, Yamanaka N, Nakashima H, Nomura M et al (2004) Hedgehog signaling pathway is a new therapeutic target for patients with breast cancer. Cancer Res 64:6071–6074

    Article  PubMed  CAS  Google Scholar 

  36. Hu Z, Bonifas JM, Aragon G, Kopelovich L, Liang Y, Ohta S et al (2003) Evidence for lack of enhanced hedgehog target gene expression in common extracutaneous tumors. Cancer Res 63:923–928

    PubMed  CAS  Google Scholar 

  37. Mukherjee S, Frolova N, Sadlonova A, Novak Z, Steg A, Page GP et al (2006) Hedgehog signaling, response to cyclopamine differ in epithelial, stromal cells in benign breast, breast cancer. Cancer Biol Ther 5:674–683

    Article  PubMed  CAS  Google Scholar 

  38. Wolf I, O’Kelly J, Rubinek T, Tong M, Nguyen A, Lin BT et al (2006) 15-hydroxyprostaglandin dehydrogenase is a tumor suppressor of human breast cancer. Cancer Res 66:7818–7823

    Article  PubMed  CAS  Google Scholar 

  39. Munster PN, Troso-Sandoval T, Rosen N, Rifkind R, Marks PA, Richon VM (2001) The histone deacetylase inhibitor suberoylanilide hydroxamic acid induces differentiation of human breast cancer cells. Cancer Res 61:8492–8497

    PubMed  CAS  Google Scholar 

  40. Domann FE, Rice JC, Hendrix MJ, Futscher BW (2000) Epigenetic silencing of maspin gene expression in human breast cancers. Int J Cancer 85:805–810

    Article  PubMed  CAS  Google Scholar 

  41. Gagnon J, Shaker S, Primeau M, Hurtubise A, Momparler RL (2003) Interaction of 5-aza-2′-deoxycytidine and depsipeptide on antineoplastic activity and activation of 14–3-3sigma, E-cadherin and tissue inhibitor of metalloproteinase 3 expression in human breast carcinoma cells. Anticancer Drugs 14:193–202

    Article  PubMed  CAS  Google Scholar 

  42. Taipale J, Chen JK, Cooper MK, Wang B, Mann RK, Milenkovic L et al (2000) Effects of oncogenic mutations in Smoothened and Patched can be reversed by cyclopamine. Nature 406:1005–1009

    Article  PubMed  CAS  Google Scholar 

  43. Futscher BW, O’Meara MM, Kim CJ, Rennels MA, Lu D, Gruman LM et al (2004) Aberrant methylation of the maspin promoter is an early event in human breast cancer. Neoplasia 6:380–9

    Article  PubMed  CAS  Google Scholar 

  44. Grothey A, Hashizume R, Sahin AA, McCrea PD (2000) Fascin, an actin-bundling protein associated with cell motility, is upregulated in hormone receptor negative breast cancer. Br J Cancer 83:870–873

    Article  PubMed  CAS  Google Scholar 

  45. Spychala J, Lazarowski E, Ostapkowicz A, Ayscue LH, Jin A, Mitchell BS (2004) Role of estrogen receptor in the regulation of ecto-5′-nucleotidase and adenosine in breast cancer. Clin Cancer Res 10:708–717

    Article  PubMed  CAS  Google Scholar 

  46. Maesawa C, Tamura G, Iwaya T, Ogasawara S, Ishida K, Sato N et al (1998) Mutations in the human homologue of the Drosophila patched gene in esophageal squamous cell carcinoma. Genes Chromosomes Cancer 21:276–279

    Article  PubMed  CAS  Google Scholar 

  47. McGarvey TW, Maruta Y, Tomaszewski JE, Linnenbach AJ, Malkowicz SB (1998) PTCH gene mutations in invasive transitional cell carcinoma of the bladder. Oncogene 17:1167–1172

    Article  PubMed  CAS  Google Scholar 

  48. Kogerman P, Krause D, Rahnama F, Kogerman L, Unden AB, Zaphiropoulos PG et al (2002) Alternative first exons of PTCH1 are differentially regulated in vivo and may confer different functions to the PTCH1 protein. Oncogene 21:6007–6016

    Article  PubMed  CAS  Google Scholar 

  49. Nagao K, Toyoda M, Takeuchi-Inoue K, Fujii K, Yamada M, Miyashita T (2005) Identification and characterization of multiple isoforms of a murine and human tumor suppressor, patched, having distinct first exons. Genomics 85:462–471

    Article  PubMed  CAS  Google Scholar 

  50. Raffel C, Jenkins RB, Frederick L, Hebrink D, Alderete B, Fults DW et al (1997) Sporadic medulloblastomas contain PTCH mutations. Cancer Res 57:842–845

    PubMed  CAS  Google Scholar 

  51. Minobe K, Onda M, Iida A, Kasumi F, Sakamoto G, Nakamura Y et al (1998) Allelic loss on chromosome 9q is associated with lymph node metastasis of primary breast cancer. Jpn J Cancer Res 89:916–922

    PubMed  CAS  Google Scholar 

  52. Katayam M, Yoshida K, Ishimori H, Katayama M, Kawase T, Motoyama J et al (2002) Patched and smoothened mRNA expression in human astrocytic tumors inversely correlates with histological malignancy. J Neurooncol 59:107–115

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported in part by the Inger Fund, Alec Borden Trust, Rountree Trust and the Mary Barry Foundation and by grants from the Women’s Cancer Research Institute, Samuel Oschin Comprehensive Cancer Institute at Cedars-Sinai Medical Center. HPK is a member of the Molecular Biology Institute and Jonsson Comprehensive Cancer Center at UCLA, and holds the endowed Mark Goodson Chair of Oncology Research at Cedars-Sinai Medical Center/UCLA School of Medicine. IW is the Mary Barry Medical Bridges Foundation Fellow. We thank PA Beachy (Johns Hopkins University School of Medicine, MD) for the PTCH and Gli-luciferase expression vectors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ido Wolf.

Electronic supplementary material

Supplemental Table 1

ESM1 (XLS 135 KB)

Supplemental Table 2

ESM2 (XLS 168 KB)

Supplemental Table 3

ESM3 (DOC 32KB)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wolf, I., Bose, S., Desmond, J.C. et al. Unmasking of epigenetically silenced genes reveals DNA promoter methylation and reduced expression of PTCH in breast cancer. Breast Cancer Res Treat 105, 139–155 (2007). https://doi.org/10.1007/s10549-006-9440-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10549-006-9440-4

Keywords

Navigation