Skip to main content

Advertisement

Log in

The neuronal guidance cue Slit2 induces targeted migration and may play a role in brain metastasis of breast cancer cells

  • Preclinical Study
  • Published:
Breast Cancer Research and Treatment Aims and scope Submit manuscript

Abstract

Cell migration is essential in many diverse processes ranging from embryonic development to wound healing and immune response. Cancer cells have recently been shown to utilize chemoattraction mechanisms mediated by chemokines and their respective receptors, e.g., the CXCL12/CXCR4 pathway normally found in leukocytes. Here we show that Slit2, a secreted protein signaling through the Roundabout (Robo) receptor as a chemorepellent in axon guidance and neuronal migration, acts as a potent chemoattractant for breast cancer cells. Comparing cell lines specifically metastasizing to either brain or bone, we found significant differences in their responses to CXCL12 and Slit2 treatments, suggesting a role for Slit/Robo signaling in brain metastasis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

MMP9:

Matrix metalloprotease 9

VEGF:

Vascular endothelial growth factor

References

  1. Ruoslahti E (1996) How cancer spreads. Sci Am 275(3):72–77

    Article  PubMed  CAS  Google Scholar 

  2. Rusciano D, Burger MM (1992) Why do cancer cells metastasize into particular organs? Bioessays 14(3):185–194

    Article  PubMed  CAS  Google Scholar 

  3. Müller A, Homey B, Soto H, Ge N, Catron D, Buchanan ME, McClanahan T, Murphy E, Yuan W, Wagner SN et al (2001) Involvement of chemokine receptors in breast cancer metastasis. Nature 410(6824):50–56

    Article  PubMed  Google Scholar 

  4. Balkwill F, Mantovani A (2001) Inflammation and cancer: back to Virchow?. Lancet 357(9255):539–545

    Article  PubMed  CAS  Google Scholar 

  5. Schmid BC, Rudas M, Rezniczek GA, Leodolter S, Zeillinger R (2004) CXCR4 is expressed in ductal carcinoma in situ of the breast and in atypical ductal hyperplasia. Breast Cancer Res Treat 84(3):247–250

    Article  PubMed  CAS  Google Scholar 

  6. Baggiolini M (1998) Chemokines and leukocyte traffic. Nature 392(6676):565–568

    Article  PubMed  CAS  Google Scholar 

  7. Campbell JJ, Butcher EC (2000) Chemokines in tissue-specific and microenvironment-specific lymphocyte homing. Curr Opin Immunol 12(3):336–341

    Article  PubMed  CAS  Google Scholar 

  8. Wu JY, Feng L, Park HT, Havlioglu N, Wen L, Tang H, Bacon KB, Jiang Z, Zhang X, Rao Y (2001) The neuronal repellent Slit inhibits leukocyte chemotaxis induced by chemotactic factors. Nature 410(6831):948–952

    Article  PubMed  CAS  Google Scholar 

  9. Wong K, Park HT, Wu JY, Rao Y (2002) Slit proteins: molecular guidance cues for cells ranging from neurons to leukocytes. Curr Opin Genet Dev 12(5):583–591

    Article  PubMed  CAS  Google Scholar 

  10. Rothberg JM, Hartley DA, Walther Z, Artavanis-Tsakonas S (1988) Slit: an EGF-homologous locus of D. melanogaster involved in the development of the embryonic central nervous system. Cell 55(6):1047–1059

    Article  PubMed  CAS  Google Scholar 

  11. Seeger M, Tear G, Ferres-Marco D, Goodman CS (1993) Mutations affecting growth cone guidance in Drosophila: genes necessary for guidance toward or away from the midline. Neuron 10(3):409–426

    Article  PubMed  CAS  Google Scholar 

  12. Hu H (1999) Chemorepulsion of neuronal migration by Slit2 in the developing mammalian forebrain. Neuron 23(4):703–711

    Article  PubMed  CAS  Google Scholar 

  13. Wu W, Wong K, Chen J, Jiang Z, Dupuis S, Wu JY, Rao Y (1999) Directional guidance of neuronal migration in the olfactory system by the protein Slit. Nature 400(6742):331–336

    Article  PubMed  CAS  Google Scholar 

  14. Holmes GP, Negus K, Burridge L, Raman S, Algar E, Yamada T, Little MH (1998) Distinct but overlapping expression patterns of two vertebrate slit homologs implies functional roles in CNS development and organogenesis. Mech Dev 79(1–2):57–72

    Article  PubMed  CAS  Google Scholar 

  15. Yoneda T, Williams PJ, Hiraga T, Niewolna M, Nishimura R (2001) A bone-seeking clone exhibits different biological properties from the MDA-MB-231 parental human breast cancer cells and a brain-seeking clone in vivo and in vitro. J Bone Miner Res 16(8):1486–1495

    Article  PubMed  CAS  Google Scholar 

  16. Li HS, Chen JH, Wu W, Fagaly T, Zhou L, Yuan W, Dupuis S, Jiang ZH, Nash W, Gick C et al (1999) Vertebrate slit, a secreted ligand for the transmembrane protein roundabout, is a repellent for olfactory bulb axons. Cell 96(6):807–818

    Article  PubMed  CAS  Google Scholar 

  17. Graham FL, van der Eb AJ (1973) Transformation of rat cells by DNA of human adenovirus 5. Virology 54(2):536–539

    Article  PubMed  CAS  Google Scholar 

  18. Kury FD, Schneeberger C, Sliutz G, Kubista E, Salzer H, Medl M, Leodolter S, Swoboda H, Zeillinger R, Spona J (1990) Determination of HER-2/neu amplification and expression in tumor tissue and cultured cells using a simple, phenol free method for nucleic acid isolation. Oncogene 5(9):1403–1408

    PubMed  CAS  Google Scholar 

  19. Tong D, Czerwenka K, Sedlak J, Schneeberger C, Schiebel I, Concin N, Leodolter S, Zeillinger R (1999) Association of in vitro invasiveness and gene expression of estrogen receptor, progesterone receptor, pS2 and plasminogen activator inhibitor-1 in human breast cancer cell lines. Breast Cancer Res Treat 56(1):91–97

    Article  PubMed  CAS  Google Scholar 

  20. Rao Y, Wong K, Ward M, Jurgensen C, Wu JY (2002) Neuronal migration and molecular conservation with leukocyte chemotaxis. Genes Dev 16(23):2973–2984

    Article  PubMed  CAS  Google Scholar 

  21. Prasad A, Fernandis AZ, Rao Y, Ganju RK (2004) Slit protein-mediated inhibition of CXCR4-induced chemotactic and chemoinvasive signaling pathways in breast cancer cells. J Biol Chem 279(10):9115–9124

    Article  PubMed  CAS  Google Scholar 

  22. Kramer SG, Kidd T, Simpson JH, Goodman CS (2001) Switching repulsion to attraction: changing responses to slit during transition in mesoderm migration. Science 292(5517):737–740

    Article  PubMed  CAS  Google Scholar 

  23. Wang B, Xiao Y, Ding BB, Zhang N, Yuan X, Gui L, Qian KX, Duan S, Chen Z, Rao Y et al (2003) Induction of tumor angiogenesis by Slit-Robo signaling and inhibition of cancer growth by blocking Robo activity. Cancer Cell 4(1):19–29

    Article  PubMed  Google Scholar 

  24. Liang Y, Annan RS, Carr SA, Popp S, Mevissen M, Margolis RK, Margolis RU (1999) Mammalian homologues of the Drosophila slit protein are ligands of the heparan sulfate proteoglycan glypican-1 in brain. J Biol Chem 274(25):17885–17892

    Article  PubMed  CAS  Google Scholar 

  25. Ronca F, Andersen JS, Paech V, Margolis RU (2001) Characterization of Slit protein interactions with glypican-1. J Biol Chem 276(31):29141–29147

    Article  PubMed  CAS  Google Scholar 

  26. Mertens G, Cassiman JJ, Van den Berghe H, Vermylen J, David G (1992) Cell surface heparan sulfate proteoglycans from human vascular endothelial cells. Core protein characterization and antithrombin III binding properties. J Biol Chem 267(28):20435–20443

    PubMed  CAS  Google Scholar 

  27. Rosenberg RD, Shworak NW, Liu J, Schwartz JJ, Zhang L (1997) Heparan sulfate proteoglycans of the cardiovascular system. Specific structures emerge but how is synthesis regulated? J Clin Invest 100(11 Suppl):S67–S75

    PubMed  CAS  Google Scholar 

  28. Nabeshima K, Inoue T, Shimao Y, Sameshima T (2002) Matrix metalloproteinases in tumor invasion: role for cell migration. Pathol Int 52(4):255–264

    Article  PubMed  CAS  Google Scholar 

  29. Munaut C, Noel A, Hougrand O, Foidart JM, Boniver J, Deprez M (2003) Vascular endothelial growth factor expression correlates with matrix metalloproteinases MT1-MMP, MMP-2 and MMP-9 in human glioblastomas. Int J Cancer 106(6):848–855

    Article  PubMed  CAS  Google Scholar 

  30. Neufeld G, Cohen T, Gengrinovitch S, Poltorak Z (1999) Vascular endothelial growth factor (VEGF) and its receptors. Faseb J 13(1):9–22

    PubMed  CAS  Google Scholar 

  31. Lee TH, Avraham HK, Jiang S, Avraham S (2003) Vascular endothelial growth factor modulates the transendothelial migration of MDA-MB-231 breast cancer cells through regulation of brain microvascular endothelial cell permeability. J Biol Chem 278(7):5277–5284

    Article  PubMed  CAS  Google Scholar 

  32. Kim LS, Huang S, Lu W, Lev DC, Price JE (2004) Vascular endothelial growth factor expression promotes the growth of breast cancer brain metastases in nude mice. Clin Exp Metastasis 21(2):107–118

    Article  PubMed  CAS  Google Scholar 

  33. Latil A, Chene L, Cochant-Priollet B, Mangin P, Fournier G, Berthon P, Cussenot O (2003) Quantification of expression of netrins, slits and their receptors in human prostate tumors. Int J Cancer 103(3):306–315

    Article  PubMed  CAS  Google Scholar 

  34. Dallol A, Da Silva NF, Viacava P, Minna JD, Bieche I, Maher ER, Latif F (2002) SLIT2, a human homologue of the Drosophila Slit2 gene, has tumor suppressor activity and is frequently inactivated in lung and breast cancers. Cancer Res 62(20):5874–5880

    PubMed  CAS  Google Scholar 

  35. Dallol A, Forgacs E, Martinez A, Sekido Y, Walker R, Kishida T, Rabbitts P, Maher ER, Minna JD, Latif F (2002) Tumour specific promoter region methylation of the human homologue of the Drosophila Roundabout gene DUTT1 (ROBO1) in human cancers. Oncogene 21(19):3020–3028

    Article  PubMed  CAS  Google Scholar 

  36. Dallol A, Krex D, Hesson L, Eng C, Maher ER, Latif F (2003) Frequent epigenetic inactivation of the SLIT2 gene in gliomas. Oncogene 22(29):4611–4616

    Article  PubMed  CAS  Google Scholar 

  37. Dallol A, Morton D, Maher ER, Latif F (2003) SLIT2 axon guidance molecule is frequently inactivated in colorectal cancer and suppresses growth of colorectal carcinoma cells. Cancer Res 63(5):1054–1058

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by “Medizinisch-wissenschaftlicher Fonds des Bürgermeisters der Bundeshauptstadt Wien”, Project No. 2185,

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert Zeillinger.

Additional information

Bernd C. Schmid and Günther A. Rezniczek contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schmid, B.C., Rezniczek, G.A., Fabjani, G. et al. The neuronal guidance cue Slit2 induces targeted migration and may play a role in brain metastasis of breast cancer cells. Breast Cancer Res Treat 106, 333–342 (2007). https://doi.org/10.1007/s10549-007-9504-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10549-007-9504-0

Keywords

Navigation