Skip to main content

Advertisement

Log in

Diffuse optical imaging of the healthy and diseased breast: A systematic review

  • Review
  • Published:
Breast Cancer Research and Treatment Aims and scope Submit manuscript

Abstract

Screening X-ray mammography is limited by false positives and negatives leading to unnecessary physical and psychological morbidity. Diffuse Optical Imaging using harmless near infra red light, provides lesion detection based on functional abnormalities and represents a novel diagnostic arm that could complement traditional mammography. Reviews of optical breast imaging have not been systematic, are focused mainly on technological developments, and have become superseded by rapid technological advancement. The aim of this study is to review clinically orientated studies involving approximately 2,000 women in whom optical mammography has been used to evaluate the healthy or diseased breast. The results suggest that approximately 85% of breast lesions are detectable on optical mammography. Spectroscopic resolution of tissue haemoglobin composition and oxygen saturation may improve the detectability of breast diseases. Results suggest that breast lesions contain approximately twice the haemoglobin concentration of background tissue. Current evidence suggests that it is not possible to distinguish benign from malignant disease using optical imaging techniques in isolation. Methods to improve the performance of Diffuse Optical Imaging, such as better spectral coverage with additional wavelengths, improved modelling of light transport in tissues and the use of extrinsic dyes may augment lesion detection and characterisation. Future research should involve large clinical trials to determine the overall sensitivity and specificity of optical imaging techniques as well as to establish patient satisfaction and economic viability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Breast cancer: incidence rises while death continues to fall. Available via http://www.statistics.gov.uk. Cited 4 Dec 2006

  2. Tabar L, Yen MF, Vitak B et al (2003) Mammography service screening and mortality in breast cancer patients: 20-year follow-up before and after introduction of screening. Lancet 361:1405–1410

    Article  PubMed  Google Scholar 

  3. Screening for breast cancer in England: past and future. Available via http://www.cancerscreening.nhs.uk/. Cited 4 Dec 2006

  4. Huynh PT, Jarolimek AM, Daye S (1998) The false-negative mammogram. Radiographics 18:1137–1154

    PubMed  CAS  Google Scholar 

  5. Elmore JG, Barton MB, Moceri VM et al (1998) Ten-year risk of false positive screening mammograms and clinical breast examinations. N Engl J Med 338:1089–1096

    Article  PubMed  CAS  Google Scholar 

  6. Lucassen A Watson E, Eccles D (2004) Advice about mammography for a young woman with a family history of breast cancer. Br Med J 322:1040–1042

    Article  Google Scholar 

  7. Cutler M (1929) Transillumination of the breast. Surg Gynaecol Obstet 48:721–727

    Google Scholar 

  8. Arridge SR, Lionheart WRB (1998) Non-uniqueness in diffusion-based optical tomography. Opt Lett 23:882–884

    PubMed  CAS  Google Scholar 

  9. Nissilä IHJ, Jennions D, Heino J et al (2006) Comparison between a time-domain and a frequency-domain system for optical tomography. J Biomed Opt 11:064015

    Article  PubMed  Google Scholar 

  10. Nioka S, Chance B (2005) NIR spectroscopic detection of breast cancer. Technol Cancer Res Treat 4:497–512

    PubMed  CAS  Google Scholar 

  11. Gibson AP, Hebden JC, Arridge SR (2005) Recent advances in diffuse optical imaging. Phys Med Biol 50:R1–R43

    Article  PubMed  CAS  Google Scholar 

  12. Hebden JC, Delpy DT (1997) Diagnostic imaging with light. Br J Radiol 70:S206–S214

    PubMed  Google Scholar 

  13. Arridge SR, Hebden JC (1997) Optical imaging in medicine: II. Modelling and reconstruction. Phys Med Biol 42:841–853

    Article  PubMed  CAS  Google Scholar 

  14. Ntziachristos V, Chance B (2001) Probing physiology and molecular function using optical imaging: applications to breast cancer. Breast Cancer Res 3:41–46

    Article  PubMed  CAS  Google Scholar 

  15. Spinelli L, Torricelli A, Pifferi A et al (2004) Bulk optical properties and tissue components in the female breast from multiwavelength time-resolved optical mammography. J Biomed Opt 9:1137–1142

    Article  PubMed  Google Scholar 

  16. Shah N, Cerussi A, Eker C et al (2001) Noninvasive functional optical spectroscopy of human breast tissue. PNAS 98:4420–4425

    Article  PubMed  CAS  Google Scholar 

  17. Shah N, Cerussi AE, Jakubowski D et al (2004) Spatial variations in optical and physiological properties of healthy breast tissue. J Biomed Opt 9:534–540

    Article  PubMed  Google Scholar 

  18. Pogue BW, Jiang S, Dehghani H et al (2004) Characterization of hemoglobin, water, and NIR scattering in breast tissue: analysis of intersubject variability and menstrual cycle changes. J Biomed Opt 9:541–552

    Article  PubMed  CAS  Google Scholar 

  19. Srinivasan S, Pogue BW, Brooksby B et al (2005) Near-infrared characterization of breast tumors in vivo using spectrally-constrained reconstruction. Technol Cancer Res Treat 4:513–526

    PubMed  Google Scholar 

  20. Srinivasan S, Pogue BW, Jiang S et al (2003) Interpreting hemoglobin and water concentration, oxygen saturation, and scattering measured in vivo by near-infrared breast tomography. Proc Natl Acad Sci USA 100:12349–12354

    Article  PubMed  CAS  Google Scholar 

  21. Durduran T, Choe R, Culver JP et al (2002) Bulk optical properties of healthy female breast tissue. Phys Med Biol 47:2847–2861

    Article  PubMed  CAS  Google Scholar 

  22. Cerussi AE, Berger AJ, Bevilacqua F et al (2001) Sources of absorption and scattering contrast for near-infrared optical mammography. Acad Radiol 8:211–218

    Article  PubMed  CAS  Google Scholar 

  23. Simick MK, Jong R, Wilson B et al (2004) Non-ionizing near-infrared radiation transillumination spectroscopy for breast tissue density and assessment of breast cancer risk. J Biomed Opt 9:794–803

    Article  PubMed  Google Scholar 

  24. Pifferi A, Swartling J, Chikoidze E et al (2004) Spectroscopic time-resolved diffuse reflectance and transmittance measurements of the female breast at different interfiber distances. J Biomed Opt 9:1143–1151

    Article  PubMed  Google Scholar 

  25. Suzuki K Yamashita Y, Ohta K et al (1996) Quantitative measurements of optical parameters in normal breasts using time-resolved spectrsocopy: in vivo results of 30 Japanese women. J Biomed Opt 1:330–334

    Article  Google Scholar 

  26. Spinelli L, Torricelli A, Pifferi A et al (2005) Characterization of female breast lesions from multi-wavelength time-resolved optical mammography. Phys Med Biol 50:2489–2502

    Article  PubMed  Google Scholar 

  27. Intes X (2005) Time-domain optical mammography SoftScan: initial results. Acad Radiol 12:934–947

    Article  PubMed  Google Scholar 

  28. Zhu Q, Cronin EB, Currier AA et al (2005) Benign versus malignant breast masses: optical differentiation with US-guided optical imaging reconstruction. Radiology 237:57–66

    Article  PubMed  Google Scholar 

  29. Zhu Q, Kurtzma SH, Hegde P et al (2005) Utilizing optical tomography with ultrasound localization to image heterogeneous hemoglobin distribution in large breast cancers. Neoplasia 7:263–270

    Article  PubMed  Google Scholar 

  30. Zhu Q, Huang M, Chen N et al (2003) Ultrasound-guided optical tomographic imaging of malignant and benign breast lesions: initial clinical results of 19 cases. Neoplasia 5:379–388

    PubMed  Google Scholar 

  31. Grosenick D, Moesta KT, Wabnitz H et al (2003) Time-domain optical mammography: initial clinical results on detection and characterization of breast tumors. Appl Opt 42:3170–3186

    Article  PubMed  Google Scholar 

  32. Grosenick D, Wabnitz H, Moesta KT et al (2004) Concentration and oxygen saturation of haemoglobin of 50 breast tumours determined by time-domain optical mammography. Phys Med Biol 49:1165–1181

    Article  PubMed  Google Scholar 

  33. Grosenick D, Moesta KT, Moller M et al (2005) Time-domain scanning optical mammography: I. Recording and assessment of mammograms of 154 patients. Phys Med Biol 50:2429–2449

    Article  PubMed  Google Scholar 

  34. Grosenick D, Wabnitz H, Moesta KT et al (2005) Time-domain scanning optical mammography: II. Optical properties and tissue parameters of 87 carcinomas. Phys Med Biol 50:2451–2468

    Article  PubMed  Google Scholar 

  35. Yates T, Hebden JC, Gibson AP et al (2005) Optical tomography of the breast using a multi-channel time-resolved imager. Phys Med Biol 50:2503–2517

    Article  PubMed  Google Scholar 

  36. Pogue BW, Poplack SP, McBride TO et al (2001) Quantitative hemoglobin tomography with diffuse near-infrared spectroscopy: pilot results in the breast. Radiology 218:261–266

    PubMed  CAS  Google Scholar 

  37. Taroni P, Torricelli A, Spinelli L et al (2005) Time-resolved optical mammography between 637 and 985 nm: clinical study on the detection and identification of breast lesions. Phys Med Biol 50:2469–2488

    Article  PubMed  Google Scholar 

  38. Taroni P, Pifferi A, Torricelli A et al (2004) Do shorter wavelengths improve contrast in optical mammography? Phys Med Biol 49:1203–1215

    Article  PubMed  CAS  Google Scholar 

  39. Taroni P, Danesini G, Torricelli A et al (2004) Clinical trial of time-resolved scanning optical mammography at 4 wavelengths between 683 and 975 nm. J Biomed Opt 9:464–473

    Article  PubMed  Google Scholar 

  40. Chance B, Nioka S, Zhang J et al (2005) Breast cancer detection based on incremental biochemical and physiological properties of breast cancers: a six-year, two-site study. Acad Radiol 12:925–933

    Article  PubMed  Google Scholar 

  41. Moesta KT, Fantini S, Jess H et al (1998) Contrast features of breast cancer in frequency-domain laser scanning mammography. J Biomed Opt 3:129–136

    Article  Google Scholar 

  42. Gu X, Zhang Q, Bartlett M et al (2004) Differentiation of cysts from solid tumors in the breast with diffuse optical tomography. Acad Radiol 11:53–60

    Article  PubMed  Google Scholar 

  43. Durduran T, Choe R, Yu G et al (2005) Diffuse optical measurement of blood flow in breast tumors. Opt Lett 30:2915–2917

    Article  PubMed  Google Scholar 

  44. Cerussi AE, Jakubowski D, Shah N et al (2002) Spectroscopy enhances the information content of optical mammography. J Biomed Opt 7:60–71

    Article  PubMed  CAS  Google Scholar 

  45. Poplack SP, Paulsen KD, Hartov A et al (2004) Electromagnetic breast imaging: average tissue property values in women with negative clinical findings. Radiology 231:571–580

    Article  PubMed  Google Scholar 

  46. Fowler PA, Casey CE, Cameron GG et al (1990) Cyclic changes in composition and volume of the breast during the menstrual cycle, measured by magnetic resonance imaging. Br J Obstet Gynaecol 97:595–602

    PubMed  CAS  Google Scholar 

  47. Graham SJ, Stanchev PL, Lloyd-Smith JO et al (1995) Changes in fibroglandular volume and water content of breast tissue during the menstrual cycle observed by MR imaging at 1.5 T. J Magn Reson Imaging 5:695–701

    Article  PubMed  CAS  Google Scholar 

  48. Byrne C, Schairer C, Wolfe J et al (1995) Mammographic features and breast cancer risk: effects with time, age, and menopause status. J Natl Cancer Inst 87:1622–1629

    Article  PubMed  CAS  Google Scholar 

  49. van Gils CH, Otten JD, Hendriks J et al (1999) High mammographic breast density and its implications for the early detection of breast cancer. J Med Screen 6:200–204

    PubMed  Google Scholar 

  50. van Veen RL, Sterenborg HJ, Marinelli AW et al (2004) Intraoperatively assessed optical properties of malignant and healthy breast tissue u sed to determine the optimum wavelength of contrast for optical mammography. J Biomed Opt 9:1129–1136

    Article  PubMed  Google Scholar 

  51. Ntziachristos V, Yodh AG, Schnall MD et al (2002) MRI-guided diffuse optical spectroscopy of malignant and benign breast lesions. Neoplasia 4:347–354

    Article  PubMed  Google Scholar 

  52. Hsiang D, Shah N, Yu H et al (2005) Coregistration of dynamic contrast enhanced MRI and broadband diffuse optical spectroscopy for characterizing breast cancer. Technol Cancer Res Treat 4:549–558

    PubMed  Google Scholar 

  53. Potten CS, Watson RJ, Williams GT et al (1988) The effect of age and menstrual cycle upon proliferative activity of the normal human breast. Br J Cancer 58:163–170

    PubMed  CAS  Google Scholar 

  54. Going JJ, Anderson TJ, Battersby S et al (1988) Proliferative and secretory activity in human breast during natural and artificial menstrual cycles. Am J Pathol 130:193–204

    PubMed  CAS  Google Scholar 

  55. Hutson SW, Cowen PN, Bird CC et al (1985) Morphometric studies of age related changes in normal human breast and their significance for evolution of mammary cancer. J Clin Pathol 38:281–287

    Article  PubMed  CAS  Google Scholar 

  56. Mandelson MT, Oestreicher N, Porter PL et al (2000) Breast density as a predictor of mammographic detection: comparison of interval- and screen-detected cancers. J Natl Cancer Inst 92:1081–1087

    Article  PubMed  CAS  Google Scholar 

  57. Rice A, Quinn CM (2002) Angiogenesis, thrombospondin, and ductal carcinoma in situ of the breast. J Clin Pathol 55:569–574

    Article  PubMed  CAS  Google Scholar 

  58. Folkman J (1995) The influence of angiogenesis research on management of patients with breast cancer. Breast Cancer Res Treat 36:109–118

    Article  PubMed  CAS  Google Scholar 

  59. Intes X, Ripoll J, Chen Y et al (2003) In vivo continuous-wave optical breast imaging enhanced with Indocyanine Green. Med Phys 30:1039–1047

    Article  PubMed  Google Scholar 

  60. Morris N, Hebden JC, Bland T et al (2003) Role of patient feedback in the design and implementation of clinical trials of optical tomography of the breast. In: Boas D (ed) Proceedings of SPIE, vol 5138: Photon migration and diffuse-light imaging. David Boas, Massachusetts General Hospital, pp 12–22

  61. Morris N, Balmer B (2006) Are you sitting comfortably? Perspectives of the researchers and the researched on ‘being comfortable’. Account Res 13:111–133

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel Richard Leff.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Leff, D.R., Warren, O.J., Enfield, L.C. et al. Diffuse optical imaging of the healthy and diseased breast: A systematic review. Breast Cancer Res Treat 108, 9–22 (2008). https://doi.org/10.1007/s10549-007-9582-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10549-007-9582-z

Keywords

Navigation