Skip to main content

Advertisement

Log in

Bone marrow cytokeratin 19 mRNA level is an independent predictor of relapse-free survival in operable breast cancer patients

  • Clinical Trial
  • Published:
Breast Cancer Research and Treatment Aims and scope Submit manuscript

Abstract

Purpose

To study the prognostic significance of elevated cytokeratin 19 (CK19) mRNA levels in the bone marrow (BM) of operable breast cancer patients.

Patients and Methods

From 1998 to 2000, BM was collected from 195 consecutive breast cancer patients immediately prior to surgery and from 34 healthy volunteers. The patients received surgical and adjuvant treatment according to national guidelines at the time. We analyzed the level of CK19 mRNA in the BM samples from patients and normal controls using a real-time RT-PCR assay. The associations with known prognostic factors and the impact of pathological CK19 mRNA levels on patients’ prognosis were investigated.

Results

Using the 99 percentile of the normal control group as a cut-off, 24 (12%) of the 195 patients and 1 (3%) of the 34 volunteers were diagnosed as CK19 mRNA positive. There was no correlation between CK19 BM status and the clinicopathological factors tested. During a median follow-up of 72 months, 7 (29%) of the 24 CK19 mRNA BM positive patients experienced systemic relapse compared to 20 (12%) of the 171 in the CK19 mRNA negative group. The patients with CK19 mRNA-positive BM had significantly shorter systemic recurrence-free survival (P = 0.01) and overall recurrence-free survival (P = 0.005). Multivariate Cox regression showed CK19 mRNA BM status to be an independent predictor of relapse.

Conclusion

Detection of CK19 mRNA in the BM of breast cancer patients by real-time RT-PCR is an independent predictor of relapse-free survival in operable breast cancer patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Heimann R, Hellman S (2000) Clinical progression of breast cancer malignant behavior: what to expect and when to expect it. J Clin Oncol 18(3):591–599

    PubMed  CAS  Google Scholar 

  2. Slade MJ, Singh A, Smith BM, Tripuraneni G, Hall E, Peckitt C et al (2005) Persistence of bone marrow micrometastases in patients receiving adjuvant therapy for breast cancer: results at 4 years. Int J Cancer 114(1):94–100

    Article  PubMed  CAS  Google Scholar 

  3. Harbeck N, Untch M, Pache L, Eiermann W (1994) Tumour cell detection in the bone marrow of breast cancer patients at primary therapy: results of a 3-year median follow-up. Br J Cancer 69(3):566–571

    PubMed  CAS  Google Scholar 

  4. Diel IJ, Kaufmann M, Costa SD, Holle R, von Minckwitz G, Solomayer EF et al (1996) Micrometastatic breast cancer cells in bone marrow at primary surgery: prognostic value in comparison with nodal status. J Natl Cancer Inst 88(22):1652–1658

    Article  PubMed  CAS  Google Scholar 

  5. Mansi JL, Gogas H, Bliss JM, Gazet JC, Berger U, Coombes RC (1999) Outcome of primary-breast-cancer patients with micrometastases: a long-term follow-up study. Lancet 354(9174):197–202

    Article  PubMed  CAS  Google Scholar 

  6. Braun S, Pantel K, Muller P, Janni W, Hepp F, Kentenich CR et al (2000) Cytokeratin-positive cells in the bone marrow and survival of patients with stage I, II, or III breast cancer. N Engl J Med 342(8):525–533

    Article  PubMed  CAS  Google Scholar 

  7. Solomayer EF, Diel IJ, Salanti G, Hahn M, Gollan C, Schutz F et al (2001) Time independence of the prognostic impact of tumor cell detection in the bone marrow of primary breast cancer patients. Clin Cancer Res 7(12):4102–4108

    PubMed  CAS  Google Scholar 

  8. Gebauer G, Fehm T, Merkle E, Beck EP, Lang N, Jager W (2001) Epithelial cells in bone marrow of breast cancer patients at time of primary surgery: clinical outcome during long-term follow-up. J Clin Oncol 19(16):3669–3674

    PubMed  CAS  Google Scholar 

  9. Wiedswang G, Borgen E, Karesen R, Kvalheim G, Nesland JM, Qvist H et al (2003) Detection of isolated tumor cells in bone marrow is an independent prognostic factor in breast cancer. J Clin Oncol 21(18):3469–3478

    Article  PubMed  CAS  Google Scholar 

  10. Pierga JY, Bonneton C, Vincent-Salomon A, de Cremoux P, Nos C, Blin N et al (2004) Clinical significance of immunocytochemical detection of tumor cells using digital microscopy in peripheral blood and bone marrow of breast cancer patients. Clin Cancer Res 10(4):1392–1400

    Article  PubMed  CAS  Google Scholar 

  11. Funke I, Schraut W (1998) Meta-analyses of studies on bone marrow micrometastases: an independent prognostic impact remains to be substantiated. J Clin Oncol 16(2):557–566

    PubMed  CAS  Google Scholar 

  12. Braun S, Vogl FD, Naume B, Janni W, Osborne MP, Coombes RC et al (2005) A pooled analysis of bone marrow micrometastasis in breast cancer. N Engl J Med 353(8):793–802

    Article  PubMed  CAS  Google Scholar 

  13. Schoenfeld A, Kruger KH, Gomm J, Sinnett HD, Gazet JC, Sacks N et al (1997) The detection of micrometastases in the peripheral blood and bone marrow of patients with breast cancer using immunohistochemistry and reverse transcriptase polymerase chain reaction for keratin 19. Eur J Cancer 33(6):854–861

    Article  PubMed  CAS  Google Scholar 

  14. Ballestrero A, Coviello DA, Garuti A, Nencioni A, Fama A, Rocco I et al (2001) Reverse-transcriptase polymerase chain reaction of the maspin gene in the detection of bone marrow breast carcinoma cell contamination. Cancer 92(8):2030–2035

    Article  PubMed  CAS  Google Scholar 

  15. Fields KK, Elfenbein GJ, Trudeau WL, Perkins JB, Janssen WE, Moscinski LC (1996) Clinical significance of bone marrow metastases as detected using the polymerase chain reaction in patients with breast cancer undergoing high-dose chemotherapy and autologous bone marrow transplantation. J Clin Oncol 14(6):1868–1876

    PubMed  CAS  Google Scholar 

  16. Slade MJ, Smith BM, Sinnett HD, Cross NC, Coombes RC (1999) Quantitative polymerase chain reaction for the detection of micrometastases in patients with breast cancer. J Clin Oncol 17(3):870–879

    PubMed  CAS  Google Scholar 

  17. Stathopoulou A, Vlachonikolis I, Mavroudis D, Perraki M, Kouroussis Ch, Apostolaki S et al (2002) Molecular detection of cytokeratin-19-positive cells in the peripheral blood of patients with operable breast cancer: evaluation of their prognostic significance. J Clin Oncol 20(16):3404–3412

    Article  PubMed  CAS  Google Scholar 

  18. Benoy IH, Elst H, Van der Auwera I, Van Laere S, van Dam P, Van Marck E et al (2004) Real-time RT-PCR correlates with immunocytochemistry for the detection of disseminated epithelial cells in bone marrow aspirates of patients with breast cancer. Br J Cancer 91(10):1813–1820

    Article  PubMed  CAS  Google Scholar 

  19. Benoy IH, Elst H, Philips M, Wuyts H, Van Dam P, Scharpe S et al (2006) Real-time RT-PCR detection of disseminated tumour cells in bone marrow has superior prognostic significance in comparison with circulating tumour cells in patients with breast cancer. Br J Cancer 94(5):672–680

    PubMed  CAS  Google Scholar 

  20. Benoy IH, Elst H, Philips M, Wuyts H, Van Dam P, Scharpe S et al (2006) Prognostic significance of disseminated tumor cells as detected by quantitative real-time reverse-transcriptase polymerase chain reaction in patients with breast cancer. Clin Breast Cancer 7(2):146–152

    Article  PubMed  CAS  Google Scholar 

  21. Shammas FV, Van Eekelen JA, Wee L, Heikkila R, Osland A (1999) Sensitive and quantitative one-step polymerase chain reaction using capillary electrophoresis and fluorescence detection for measuring cytokeratin 19 expression. Scand J Clin Lab Invest 59(8):635–642

    Article  PubMed  CAS  Google Scholar 

  22. Vandesompele J, De Preter K, Pattyn F, Poppe B, Van Roy N, De Paepe A et al (2002) Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol 3(7):research0034.1–0034.11

    Google Scholar 

  23. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods 25(4):402–408

    Article  PubMed  CAS  Google Scholar 

  24. Nordgard O, Kvaloy JT, Farmen RK, Heikkila R (2006) Error propagation in relative real-time reverse transcription polymerase chain reaction quantification models: the balance between accuracy and precision. Anal Biochem 356(2):182–193

    Article  PubMed  CAS  Google Scholar 

  25. Pfaffl MW, Horgan GW, Dempfle L (2002) Relative expression software tool (REST) for group-wise comparison and statistical analysis of relative expression results in real-time PCR. Nucleic Acids Res 30(9):e36

    Article  PubMed  Google Scholar 

  26. Grambsch P, Therneau T (1994) Proportional hazards tests and diagnostics based on weighted residuals. Biometrika 81:515–526

    Article  Google Scholar 

  27. Cristofanilli M, Budd GT, Ellis MJ, Stopeck A, Matera J, Miller MC et al (2004) Circulating tumor cells, disease progression, and survival in metastatic breast cancer. N Engl J Med 351(8):781–791

    Article  PubMed  CAS  Google Scholar 

  28. Cristofanilli M, Hayes DF, Budd GT, Ellis MJ, Stopeck A, Reuben JM et al (2005) Circulating tumor cells: a novel prognostic factor for newly diagnosed metastatic breast cancer. J Clin Oncol 23(7):1420–1430

    Article  PubMed  Google Scholar 

  29. Wiedswang G, Borgen E, Schirmer C, Karesen R, Kvalheim G, Nesland JM et al (2006) Comparison of the clinical significance of occult tumor cells in blood and bone marrow in breast cancer. Int J Cancer 118(8):2013–2019

    Article  PubMed  CAS  Google Scholar 

  30. Xenidis N, Perraki M, Kafousi M, Apostolaki S, Bolonaki I, Stathopoulou A et al (2006) Predictive and prognostic value of peripheral blood cytokeratin-19 mRNA-positive cells detected by real-time polymerase chain reaction in node-negative breast cancer patients. J Clin Oncol 24(23):3756–3762

    Article  PubMed  CAS  Google Scholar 

  31. Schlimok G, Funke I, Holzmann B, Gottlinger G, Schmidt G, Hauser H et al (1987) Micrometastatic cancer cells in bone marrow: in vitro detection with anti-cytokeratin and in vivo labeling with anti-17-1A monoclonal antibodies. Proc Natl Acad Sci U S A 84(23):8672–8676

    Article  PubMed  CAS  Google Scholar 

  32. Abd El-Rehim DM, Pinder SE, Paish CE, Bell J, Blamey RW, Robertson JF et al (2004) Expression of luminal and basal cytokeratins in human breast carcinoma. J Pathol 203(2):661–671

    Article  PubMed  Google Scholar 

  33. Woelfle U, Cloos J, Sauter G, Riethdorf L, Janicke F, van Diest P et al (2003) Molecular signature associated with bone marrow micrometastasis in human breast cancer. Cancer Res 63(18):5679–5684

    PubMed  CAS  Google Scholar 

  34. Sorlie T, Perou CM, Tibshirani R, Aas T, Geisler S, Johnsen H et al (2001) Gene expression patterns of breast carcinomas distinguish tumor subclasses with clinical implications. Proc Natl Acad Sci U S A 98(19):10869–10874

    Article  PubMed  CAS  Google Scholar 

  35. Chambers AF, Naumov GN, Vantyghem SA, Tuck AB (2000) Molecular biology of breast cancer metastasis. Clinical implications of experimental studies on metastatic inefficiency. Breast Cancer Res 2(6):400–407

    Article  PubMed  CAS  Google Scholar 

  36. Mehes G, Witt A, Kubista E, Ambros PF (2001) Circulating breast cancer cells are frequently apoptotic. Am J Pathol 159(1):17–20

    PubMed  CAS  Google Scholar 

  37. Mehlen P, Puisieux A (2006) Metastasis: a question of life or death. Nat Rev Cancer 6(6):449–458

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Reino Heikkilä.

Additional information

This work was supported by the Norwegian Cancer Society.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Farmen, R.K., Nordgård, O., Gilje, B. et al. Bone marrow cytokeratin 19 mRNA level is an independent predictor of relapse-free survival in operable breast cancer patients. Breast Cancer Res Treat 108, 251–258 (2008). https://doi.org/10.1007/s10549-007-9592-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10549-007-9592-x

Keywords

Navigation