Skip to main content

Advertisement

Log in

Neutrophil gelatinase-associated lipocalin (NGAL) is a predictor of poor prognosis in human primary breast cancer

  • Clinical Trial
  • Published:
Breast Cancer Research and Treatment Aims and scope Submit manuscript

Abstract

Neutrophil gelatinase-associated lipocalin (NGAL) is a small, secreted glycoprotein with proposed functions in cell proliferation, survival and morphogenesis. NGAL is expressed in a variety of tumor types including breast carcinomas, but it is not known whether NGAL contributes directly to breast cancer progression. This study examines the relationship between NGAL expression in breast carcinomas and established clinical prognostic markers as well as clinical outcome. Using immunohistochemistry in tissue microarrays containing well characterized tumor samples from 207 breast cancer patients, NGAL was detected in 68 breast carcinomas in a cytoplasmic location. NGAL expression correlated strongly with negative steroid receptor status, HER-2/neu overexpression, poor histologic grade, the presence of lymph node metastases and a high Ki-67 proliferation index. In univariate survival analysis, NGAL expression was associated with decreased disease-specific survival and decreased disease-free survival in the entire cohort. In multivariate analysis, NGAL remained an independent prognostic marker for disease-free survival. In a subset of patients with estrogen receptor positive tumors, NGAL was significantly associated with decreased disease-free survival. The results show that NGAL expression is a predictor of poor prognosis in primary human breast cancer and suggest that NGAL detection may provide information for risk assessment and identify a subset of patients requiring more aggressive adjuvant therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Flower DR (1996) The lipocalin protein family: structure and function. Biochem J 318(Pt 1):1–14

    PubMed  CAS  Google Scholar 

  2. Triebel S, Blaser J, Reinke H, Tschesche H (1992) A 25 kDa alpha 2-microglobulin-related protein is a component of the 125 kDa form of human gelatinase. FEBS Lett 314:386–388

    Article  PubMed  CAS  Google Scholar 

  3. Kjeldsen L, Johnsen AH, Sengelov H, Borregaard N (1993) Isolation and primary structure of NGAL, a novel protein associated with human neutrophil gelatinase. J Biol Chem 268:10425–10432

    PubMed  CAS  Google Scholar 

  4. Stoesz SP, Gould MN (1995) Overexpression of neu-related lipocalin (NRL) in neu-initiated but not ras or chemically initiated rat mammary carcinomas. Oncogene 11:2233–2241

    PubMed  CAS  Google Scholar 

  5. Axelsson L, Bergenfeldt M, Ohlsson K (1995) Studies of the release and turnover of a human neutrophil lipocalin. Scand J Clin Lab Invest 55:577–588

    Article  PubMed  CAS  Google Scholar 

  6. Nielsen BS, Borregaard N, Bundgaard JR, Timshel S, Sehested M, Kjeldsen L (1996) Induction of NGAL synthesis in epithelial cells of human colorectal neoplasia and inflammatory bowel diseases. Gut 38:414–420

    Article  PubMed  CAS  Google Scholar 

  7. Cowland JB, Sorensen OE, Sehested M, Borregaard N (2003) Neutrophil gelatinase-associated lipocalin is up-regulated in human epithelial cells by IL-1 beta, but not by TNF-alpha. J Immunol 171:6630–6639

    PubMed  CAS  Google Scholar 

  8. Stoesz SP, Friedl A, Haag JD, Lindstrom MJ, Clark GM, Gould MN (1998) Heterogeneous expression of the lipocalin NGAL in primary breast cancers. Int J Cancer 79:565–572

    Article  PubMed  CAS  Google Scholar 

  9. Friedl A, Stoesz SP, Buckley P, Gould MN (1999) Neutrophil gelatinase-associated lipocalin in normal and neoplastic human tissues. Cell type-specific pattern of expression. Histochem J 31:433–441

    CAS  Google Scholar 

  10. Cowland JB, Borregaard N (1997) Molecular characterization and pattern of tissue expression of the gene for neutrophil gelatinase-associated lipocalin from humans. Genomics 45:17–23

    Article  PubMed  CAS  Google Scholar 

  11. Furutani M, Arii S, Mizumoto M, Kato M, Imamura M (1998) Identification of a neutrophil gelatinase-associated lipocalin mRNA in human pancreatic cancers using a modified signal sequence trap method. Cancer Lett 122:209–214

    Article  PubMed  CAS  Google Scholar 

  12. Seth P, Porter D, Lahti-Domenici J, Geng Y, Richardson A, Polyak K (2002) Cellular and molecular targets of estrogen in normal human breast tissue. Cancer Res 62:4540–4544

    PubMed  CAS  Google Scholar 

  13. Yan L, Borregaard N, Kjeldsen L, Moses MA (2001) The high molecular weight urinary matrix metalloproteinase (MMP) activity is a complex of gelatinase B/MMP-9 and neutrophil gelatinase-associated lipocalin (NGAL). Modulation of MMP-9 activity by NGAL. J Biol Chem 276:37258–37265

    Article  PubMed  CAS  Google Scholar 

  14. Fernandez CA, Yan L, Louis G, Yang J, Kutok JL, Moses MA (2005) The matrix metalloproteinase-9/neutrophil gelatinase-associated lipocalin complex plays a role in breast tumor growth and is present in the urine of breast cancer patients. Clin Cancer Res 11:5390–5395

    Article  PubMed  CAS  Google Scholar 

  15. Tong Z, Wu X, Ovcharenko D, Zhu J, Chen CS, Kehrer JP (2005) Neutrophil gelatinase-associated lipocalin as a survival factor. Biochem J 391:441–448

    Article  PubMed  CAS  Google Scholar 

  16. Lin H, Monaco G, Sun T et al (2005) Bcr-Abl-mediated suppression of normal hematopoiesis in leukemia. Oncogene 24:3246–3256

    Article  PubMed  CAS  Google Scholar 

  17. Baba F, Swartz K, van Buren R et al (2006) Syndecan-1 and syndecan-4 are overexpressed in an estrogen receptor-negative, highly proliferative breast carcinoma subtype. Breast Cancer Res Treat 98:91–98

    Article  PubMed  CAS  Google Scholar 

  18. Wolberg WH, Street WN (2002) Computer-generated nuclear features compared with axillary lymph node status and tumor size as indicators of breast cancer survival. Hum Pathol 33:1086–1091

    Article  PubMed  Google Scholar 

  19. Harvey JM, Clark GM, Osborne CK, Allred DC (1999) Estrogen receptor status by immunohistochemistry is superior to the ligand-binding assay for predicting response to adjuvant endocrine therapy in breast cancer. J Clin Oncol 17:1474–1481

    PubMed  CAS  Google Scholar 

  20. Altman DG (1991) Practical statistics for medical research. Chapman and Hall, London

    Google Scholar 

  21. Gruvberger S, Ringner M, Chen Y et al (2001) Estrogen receptor status in breast cancer is associated with remarkably distinct gene expression patterns. Cancer Res 61:5979–5984

    PubMed  CAS  Google Scholar 

  22. Wang Y, Klijn JG, Zhang Y et al (2005) Gene-expression profiles to predict distant metastasis of lymph-node-negative primary breast cancer. Lancet 365:671–679

    PubMed  CAS  Google Scholar 

  23. van de Vijver MJ, He YD, van’t Veer LJ et al (2002) A gene-expression signature as a predictor of survival in breast cancer. N Engl J Med 347:1999–2009

    Article  PubMed  Google Scholar 

  24. van ‘t Veer LJ, Dai H, van de Vijver MJ et al (2002) Gene expression profiling predicts clinical outcome of breast cancer. Nature 415:530–536

    Article  PubMed  Google Scholar 

  25. Goldhirsch A, Glick JH, Gelber RD, Coates AS, Thurlimann B, Senn HJ (2005) Meeting highlights: international expert consensus on the primary therapy of early breast cancer 2005. Ann Oncol 16:1569–1583

    Article  PubMed  CAS  Google Scholar 

  26. Stuckey R, Aldridge T, Lim FL et al (2006) Induction of iron homeostasis genes during estrogen-induced uterine growth and differentiation. Mol Cell Endocrinol 253:22–29

    Article  PubMed  CAS  Google Scholar 

  27. Ryon J, Bendickson L, Nilsen-Hamilton M (2002) High expression in involuting reproductive tissues of uterocalin/24p3, a lipocalin and acute phase protein. Biochem J 367:271–277

    Article  PubMed  CAS  Google Scholar 

  28. Sato N, Fukushima N, Matsubayashi H, Goggins M (2004) Identification of maspin and S100P as novel hypomethylation targets in pancreatic cancer using global gene expression profiling. Oncogene 23:1531–1538

    Article  PubMed  CAS  Google Scholar 

  29. Yang J, Goetz D, Li JY et al (2002) An iron delivery pathway mediated by a lipocalin. Mol Cell 10:1045–1056

    Article  PubMed  CAS  Google Scholar 

  30. Cooper CE, Porter JB (1997) Ribonucleotide reductase, lipoxygenase and the intracellular low-molecular-weight iron pool. Biochem Soc Trans 25:75–80

    PubMed  CAS  Google Scholar 

  31. Yamaguchi-Iwai Y, Stearman R, Dancis A, Klausner RD (1996) Iron-regulated DNA binding by the AFT1 protein controls the iron regulon in yeast. EMBO J 15:3377–3384

    PubMed  CAS  Google Scholar 

  32. Rouault T, Klausner R (1997) Regulation of iron metabolism in eukaryotes. Curr Top Cell Regul 35:1–19

    Article  PubMed  CAS  Google Scholar 

  33. Kemp JD (1997) Iron deprivation and cancer: a view beginning with studies of monoclonal antibodies against the transferrin receptor. Histol Histopathol 12:291–296

    PubMed  CAS  Google Scholar 

  34. Buss JL, Greene BT, Turner J, Torti FM, Torti SV (2004) Iron chelators in cancer chemotherapy. Curr Top Med Chem 4:1623–1635

    Article  PubMed  CAS  Google Scholar 

  35. Jones DT, Trowbridge IS, Harris AL (2006) Effects of transferrin receptor blockade on cancer cell proliferation and hypoxia-inducible factor function and their differential regulation by ascorbate. Cancer Res 66:2749–2756

    Article  PubMed  CAS  Google Scholar 

  36. Reddel RR, Hedley DW, Sutherland RL (1985) Cell cycle effects of iron depletion on T-47D human breast cancer cells. Exp Cell Res 161:277–284

    Article  PubMed  CAS  Google Scholar 

  37. Yang DC, Jiang XP, Elliott RL, Head JF (2001) Inhibition of growth of human breast carcinoma cells by an antisense oligonucleotide targeted to the transferrin receptor gene. Anticancer Res 21:1777–1787

    PubMed  CAS  Google Scholar 

  38. Lochter A, Sternlicht MD, Werb Z, Bissell MJ (1998) The significance of matrix metalloproteinases during early stages of tumor progression. Ann N Y Acad Sci 857:180–193

    Article  PubMed  CAS  Google Scholar 

  39. Lee S, Jilani SM, Nikolova GV, Carpizo D, Iruela-Arispe ML (2005) Processing of VEGF-A by matrix metalloproteinases regulates bioavailability and vascular patterning in tumors. J Cell Biol 169:681–691

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

Funding was provided to A.F. by the NIH (CA R01CA107012-01A1) and to M.B. by the Deutsche Krebshilfe. Sally Drew performed the immunohistochemical stains and Korise Rasmusson helped prepare the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andreas Friedl.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bauer, M., Eickhoff, J.C., Gould, M.N. et al. Neutrophil gelatinase-associated lipocalin (NGAL) is a predictor of poor prognosis in human primary breast cancer. Breast Cancer Res Treat 108, 389–397 (2008). https://doi.org/10.1007/s10549-007-9619-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10549-007-9619-3

Keywords

Navigation