Skip to main content

Advertisement

Log in

Insulin receptor substrate 1 modulates the transcriptional activity and the stability of androgen receptor in breast cancer cells

  • Preclinical Study
  • Published:
Breast Cancer Research and Treatment Aims and scope Submit manuscript

Abstract

Breast cancer development and progression is regulated by growth factors and steroid hormones. Although the majority of human breast cancers expresses androgen receptor (AR), the role of androgens in breast tumorigenesis remains largely unexplored. Here we demonstrate that an AR ligand, 5-alpha-dihydrotestosterone (DHT), inhibits MCF-7 breast cancer cell growth induced by insulin like growth factor 1 (IGF-I). Our results show that DHT induces association of AR with IRS-1, the major IGF-1 receptor signaling molecule. The AR/IRS-1 complex translocates to the nucleus and is recruited to gene promoters containing androgen responsive elements causing an increase of AR transcriptional activity. Moreover, IRS-1 knockdown suggests that IRS-1/AR interaction decreases the ubiquitin/proteasome dependent degradation of AR, increasing its stability. Taken together, these data indicate that nuclear IRS-1 is a novel AR regulator required to sustain AR activity and demonstrate, for the first time in breast cancer cells, the existence of a functional interplay between the IGF system and AR. This interplay may represent the molecular basis of mechanisms through which androgens exert their inhibitory role on the proliferation of breast cancer cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Aronica SM, Katzenellenbogen BS (1993) Stimulation of estrogen receptor-mediated transcription and alteration in the phosphorylation state of the rat uterine estrogen receptor by estrogen, cyclic adenosine monophosphate, and insulin-like growth factor-I. Mol Endocrinol 7:743–752. doi:10.1210/me.7.6.743

    Article  PubMed  CAS  Google Scholar 

  2. Ignar-Trowbridge DM, Teng CT, Ross KA et al (1993) Peptide growth factors elicit estrogen receptor-dependent transcriptional activation of an estrogen-responsive element. Mol Endocrinol 7:992–998. doi:10.1210/me.7.8.992

    Article  PubMed  CAS  Google Scholar 

  3. Reddy KB, Yee D, Hilsenbeck SG et al (1994) Inhibition of estrogen-induced breast cancer cell proliferation by reduction in autocrine transforming growth factor alpha expression. Cell Growth Differ 5:1275–1282

    PubMed  CAS  Google Scholar 

  4. Ruohola JK, Valve EM, Karkkainen MJ et al (1999) Vascular endothelial growth factors are differentially regulated by steroid hormones and antiestrogens in breast cancer cells. Mol Cell Endocrinol 149:29–40. doi:10.1016/S0303-7207(99)00003-9

    Article  PubMed  CAS  Google Scholar 

  5. Sisci D, Surmacz E (2007) Crosstalk between IGF signaling and steroid hormone receptors in breast cancer. Curr Pharm Des 13:705–717. doi:10.2174/138161207780249182

    Article  PubMed  CAS  Google Scholar 

  6. Birrell SN, Bentel JM, Hickey TE et al (1995) Androgens induce divergent proliferative responses in human breast cancer cell lines. J Steroid Biochem Mol Biol 52:459–467. doi:10.1016/0960-0760(95)00005-K

    Article  PubMed  CAS  Google Scholar 

  7. Labrie F, Luu-The V, Labrie C et al (2003) Endocrine and intracrine sources of androgens in women: inhibition of breast cancer and other roles of androgens and their precursor dehydroepiandrosterone. Endocr Rev 24:152–182. doi:10.1210/er.2001-0031

    Article  PubMed  CAS  Google Scholar 

  8. Dimitrakakis C, Zhou J, Wang J et al (2003) A physiologic role for testosterone in limiting estrogenic stimulation of the breast. Menopause 10:292–298. doi:10.1097/01.GME.0000055522.67459.89

    Article  PubMed  Google Scholar 

  9. Murphy LC, Watson P (2002) Steroid receptors in human breast tumorigenesis and breast cancer progression. Biomed Pharmacother 56:65–77. doi:10.1016/S0753-3322(01)00157-3

    Article  PubMed  CAS  Google Scholar 

  10. Ando S, De Amicis F, Rago V et al (2002) Breast cancer: from estrogen to androgen receptor. Mol Cell Endocrinol 193:121–128. doi:10.1016/S0303-7207(02)00105-3

    Article  PubMed  CAS  Google Scholar 

  11. Ortmann J, Prifti S, Bohlmann MK et al (2002) Testosterone and 5-alpha-dihydrotestosterone inhibit in vitro growth of human breast cancer cell lines. Gynecol Endocrinol 16:113–120. doi:10.1080/713603030

    Article  PubMed  CAS  Google Scholar 

  12. Lanzino M, De Amicis F, McPhaul MJ et al (2005) Endogenous coactivator ARA70 interacts with estrogen receptor alpha (ERalpha) and modulates the functional ERalpha/androgen receptor interplay in MCF-7 cells. J Biol Chem 280:20421–20430. doi:10.1074/jbc.M413576200

    Article  PubMed  CAS  Google Scholar 

  13. Kuenen-Boumeester V, Van der Kwast TH, van Putten WL et al (1992) Immunohistochemical determination of androgen receptors in relation to oestrogen and progesterone receptors in female breast cancer. Int J Cancer 52:581–584. doi:10.1002/ijc.2910520415

    Article  PubMed  CAS  Google Scholar 

  14. Lea OA, Kvinnsland S, Thorsen T (1989) Improved measurement of androgen receptors in human breast cancer. Cancer Res 49:7162–7167

    PubMed  CAS  Google Scholar 

  15. Wilson CM, McPhaul MJ (1996) A and B forms of the androgen receptor are expressed in a variety of human tissues. Mol Cell Endocrinol 120:51–57. doi:10.1016/0303-7207(96)03819-1

    Article  PubMed  CAS  Google Scholar 

  16. Bayer-Garner IB, Smoller B (2000) Androgen receptors: a marker to increase sensitivity for identifying breast cancer in skin metastasis of unknown primary site. Mod Pathol 13:119–122. doi:10.1038/modpathol.3880021

    Article  PubMed  CAS  Google Scholar 

  17. Bryan RM, Mercer RJ, Bennett RC et al (1984) Androgen receptors in breast cancer. Cancer 54:2436–2440. doi :10.1002/1097-0142(19841201)54:11 ≤ 2436::AID-CNCR2820541121 ≥ 3.0.CO;2-H

    Article  PubMed  CAS  Google Scholar 

  18. Berns EM, Dirkzwager-Kiel MJ, Kuenen-Boumeester V et al (2003) Androgen pathway dysregulation in BRCA1-mutated breast tumors. Breast Cancer Res Treat 79:121–127. doi:10.1023/A:1023347409599

    Article  PubMed  CAS  Google Scholar 

  19. Kollara A, Kahn HJ, Marks A et al (2001) Loss of androgen receptor associated protein 70 (ARA70) expression in a subset of HER2-positive breast cancers. Breast Cancer Res Treat 67:245–253. doi:10.1023/A:1017938608460

    Article  PubMed  CAS  Google Scholar 

  20. Morelli C, Garofalo C, Sisci D et al (2004) Nuclear insulin receptor substrate 1 interacts with estrogen receptor alpha at ERE promoters. Oncogene 23:7517–7526. doi:10.1038/sj.onc.1208014

    Article  PubMed  CAS  Google Scholar 

  21. Surmacz E (2000) Function of the IGF-I receptor in breast cancer. J Mammary Gland Biol Neoplasia 5:95–105. doi:10.1023/A:1009523501499

    Article  PubMed  CAS  Google Scholar 

  22. Sachdev D, Yee D (2001) The IGF system and breast cancer. Endocr Relat Cancer 8:197–209. doi:10.1677/erc.0.0080197

    Article  PubMed  CAS  Google Scholar 

  23. Lassak A, Del Valle L, Peruzzi F et al (2002) Insulin receptor substrate 1 translocation to the nucleus by the human JC virus T-antigen. J Biol Chem 277:17231–17238. doi:10.1074/jbc.M110885200

    Article  PubMed  CAS  Google Scholar 

  24. Sisci D, Morelli C, Garofalo C et al (2006) Expression of nuclear insulin receptor substrate 1 (IRS-1) in breast cancer. J Clin Pathol 60:633–641

    Article  PubMed  Google Scholar 

  25. Sun H, Tu X, Prisco M et al (2003) Insulin-like growth factor I receptor signaling and nuclear translocation of insulin receptor substrates 1 and 2. Mol Endocrinol 17:472–486. doi:10.1210/me.2002-0276

    Article  PubMed  CAS  Google Scholar 

  26. Tu X, Batta P, Innocent N et al (2002) Nuclear translocation of insulin receptor substrate-1 by oncogenes and Igf-I. Effect on ribosomal RNA synthesis. J Biol Chem 277:44357–44365. doi:10.1074/jbc.M208001200

    Article  PubMed  CAS  Google Scholar 

  27. Tilley WD, Marcelli M, McPhaul MJ (1990) Expression of the human androgen receptor gene utilizes a common promoter in diverse human tissues and cell lines. J Biol Chem 265:13776–13781

    PubMed  CAS  Google Scholar 

  28. Cesarone G, Garofalo C, Abrams MT et al (2006) RNAi-mediated silencing of insulin receptor substrate 1 (IRS-1) enhances tamoxifen-induced cell death in MCF-7 breast cancer cells. J Cell Biochem 98:440–450. doi:10.1002/jcb.20817

    Article  PubMed  CAS  Google Scholar 

  29. Laban C, Bustin SA, Jenkins PJ (2003) The GH-IGF-I axis and breast cancer. Trends Endocrinol Metab 14:28–34. doi:10.1016/S1043-2760(02)00003-6

    Article  PubMed  CAS  Google Scholar 

  30. Greeve MA, Allan RK, Harvey JM et al (2004) Inhibition of MCF-7 breast cancer cell proliferation by 5alpha-dihydrotestosterone; a role for p21(Cip1/Waf1). J Mol Endocrinol 32:793–810. doi:10.1677/jme.0.0320793

    Article  PubMed  CAS  Google Scholar 

  31. Cleutjens KB, van Eekelen CC, van der Korput HA et al (1996) Two androgen response regions cooperate in steroid hormone regulated activity of the prostate-specific antigen promoter. J Biol Chem 271:6379–6388. doi:10.1074/jbc.271.11.6379

    Article  PubMed  CAS  Google Scholar 

  32. Black MH, Diamandis EP (2000) The diagnostic and prognostic utility of prostate-specific antigen for diseases of the breast. Breast Cancer Res Treat 59:1–14. doi:10.1023/A:1006380306781

    Article  PubMed  CAS  Google Scholar 

  33. Lu S, Liu M, Epner DE et al (1999) Androgen regulation of the cyclin-dependent kinase inhibitor p21 gene through an androgen response element in the proximal promoter. Mol Endocrinol 13:376–384. doi:10.1210/me.13.3.376

    Article  PubMed  CAS  Google Scholar 

  34. Takane KK, McPhaul MJ (1996) Functional analysis of the human androgen receptor promoter. Mol Cell Endocrinol 119:83–93. doi:10.1016/0303-7207(96)03800-2

    Article  PubMed  CAS  Google Scholar 

  35. Dai JL, Burnstein KL (1996) Two androgen response elements in the androgen receptor coding region are required for cell-specific up-regulation of receptor messenger RNA. Mol Endocrinol 10:1582–1594. doi:10.1210/me.10.12.1582

    Article  PubMed  CAS  Google Scholar 

  36. Freiman RN, Tjian R (2003) Regulating the regulators: lysine modifications make their mark. Cell 112:11–17. doi:10.1016/S0092-8674(02)01278-3

    Article  PubMed  CAS  Google Scholar 

  37. Nawaz Z, O’Malley BW (2004) Urban renewal in the nucleus: is protein turnover by proteasomes absolutely required for nuclear receptor-regulated transcription? Mol Endocrinol 18:493–499. doi:10.1210/me.2003-0388

    Article  PubMed  CAS  Google Scholar 

  38. Lee AV, Gooch JL, Oesterreich S et al (2000) Insulin-like growth factor I-induced degradation of insulin receptor substrate 1 is mediated by the 26S proteasome and blocked by phosphatidylinositol 3′-kinase inhibition. Mol Cell Biol 20:1489–1496. doi:10.1128/MCB.20.5.1489-1496.2000

    Article  PubMed  CAS  Google Scholar 

  39. Zhang H, Hoff H, Sell C (2000) Insulin-like growth factor I-mediated degradation of insulin receptor substrate-1 is inhibited by epidermal growth factor in prostate epithelial cells. J Biol Chem 275:22558–22562. doi:10.1074/jbc.M000412200

    Article  PubMed  CAS  Google Scholar 

  40. Burgdorf S, Leister P, Scheidtmann KH (2004) TSG101 interacts with apoptosis-antagonizing transcription factor and enhances androgen receptor-mediated transcription by promoting its monoubiquitination. J Biol Chem 279:17524–17534. doi:10.1074/jbc.M313703200

    Article  PubMed  CAS  Google Scholar 

  41. Gaughan L, Logan IR, Neal DE et al (2005) Regulation of androgen receptor and histone deacetylase 1 by Mdm2-mediated ubiquitylation. Nucleic Acids Res 33:13–26. doi:10.1093/nar/gki141

    Article  PubMed  CAS  Google Scholar 

  42. Lin HK, Wang L, Hu YC et al (2002) Phosphorylation-dependent ubiquitylation and degradation of androgen receptor by Akt require Mdm2 E3 ligase. EMBO J 21:4037–4048. doi:10.1093/emboj/cdf406

    Article  PubMed  CAS  Google Scholar 

  43. Palombella VJ, Rando OJ, Goldberg AL et al (1994) The ubiquitin-proteasome pathway is required for processing the NF-kappa B1 precursor protein and the activation of NF-kappa B. Cell 78:773–785. doi:10.1016/S0092-8674(94)90482-0

    Article  PubMed  CAS  Google Scholar 

  44. Surmacz E, Burgaud JL (1995) Overexpression of insulin receptor substrate 1 (IRS-1) in the human breast cancer cell line MCF-7 induces loss of estrogen requirements for growth and transformation. Clin Cancer Res 1:1429–1436

    PubMed  CAS  Google Scholar 

  45. Schnarr B, Strunz K, Ohsam J, et al (2000) Down-regulation of insulin-like growth factor-I receptor and insulin receptor substrate-1 expression in advanced human breast cancer. Int J Cancer 89:506–513. doi :10.1002/1097-0215(20001120)89:6≤506::AID-IJC7≥3.0.CO;2-F

    Google Scholar 

  46. Prall OW, Sarcevic B, Musgrove EA et al (1997) Estrogen-induced activation of Cdk4 and Cdk2 during G1-S phase progression is accompanied by increased cyclin D1 expression and decreased cyclin-dependent kinase inhibitor association with cyclin E-Cdk2. J Biol Chem 272:10882–10894. doi:10.1074/jbc.272.16.10882

    Article  PubMed  CAS  Google Scholar 

  47. Skildum AJ, Mukherjee S, Conrad SE (2002) The cyclin-dependent kinase inhibitor p21WAF1/Cip1 is an antiestrogen-regulated inhibitor of Cdk4 in human breast cancer cells. J Biol Chem 277:5145–5152. doi:10.1074/jbc.M109179200

    Article  PubMed  CAS  Google Scholar 

  48. Rocha RL, Hilsenbeck SG, Jackson JG et al (1997) Insulin-like growth factor binding protein-3 and insulin receptor substrate-1 in breast cancer: correlation with clinical parameters and disease-free survival. Clin Cancer Res 3:103–109

    PubMed  CAS  Google Scholar 

  49. Trojanek J, Ho T, Croul S et al (2006) IRS-1-Rad51 nuclear interaction sensitizes JCV T-antigen positive medulloblastoma cells to genotoxic treatment. Int J Cancer 119:539–548. doi:10.1002/ijc.21828

    Article  PubMed  CAS  Google Scholar 

  50. Pajonk F, van Ophoven A, Weissenberger C et al (2005) The proteasome inhibitor MG-132 sensitizes PC-3 prostate cancer cells to ionizing radiation by a DNA-PK-independent mechanism. BMC Cancer 5:76. doi:10.1186/1471-2407-5-76

    Article  PubMed  Google Scholar 

  51. Reddy GP, Barrack ER, Dou QP et al (2006) Regulatory processes affecting androgen receptor expression, stability, and function: Potential targets to treat hormone-refractory prostate cancer. J Cell Biochem 98:1408–1423

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

Financial support: AIRC—2004, MURST Ex 60%—2005, Sbarro Health Research Organization, and NIH DK03892 and Robert A. Welch grant (I-1090)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Diego Sisci.

Additional information

Marilena Lanzino and Cecilia Garofalo contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lanzino, M., Garofalo, C., Morelli, C. et al. Insulin receptor substrate 1 modulates the transcriptional activity and the stability of androgen receptor in breast cancer cells. Breast Cancer Res Treat 115, 297–306 (2009). https://doi.org/10.1007/s10549-008-0079-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10549-008-0079-1

Keywords

Navigation