Skip to main content

Advertisement

Log in

Genetic variation in DNA repair pathway genes and premenopausal breast cancer risk

  • Epidemiology
  • Published:
Breast Cancer Research and Treatment Aims and scope Submit manuscript

Abstract

Purpose We comprehensively evaluated genetic variants in DNA repair genes with premenopausal breast cancer risk. Methods In this nested case–control study of 239 prospectively ascertained premenopausal breast cancer cases and 477 matched controls within the Nurses’ Health Study II, we evaluated 1,463 genetic variants in 60 candidate genes across five DNA repair pathways, along with DNA polymerases, Fanconi Anemia complementation groups, and other related genes. Results Four variants were associated with breast cancer risk with a significance level of <0.01; two in the XPF gene and two in the XRCC3 gene. An increased risk was found in those harboring a greater number of missense putative risk alleles (a priori defined in an independent study) in the non-homologous end-joining (NHEJ) repair pathway of double-strand breaks (odds ratio (OR) per risk allele, 1.37 (95% confidence interval (CI), 1.03–1.82), P trend, 0.03). Conclusions This study implicates variants of genes in the double-strand break repair pathway in the etiology of premenopausal breast cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Abbreviations

BER:

Base excision repair

CI:

Confidence interval

DSB:

Double strand break

ER:

Estrogen receptor

HR:

Homologous recombination

LD:

Linkage disequilibrium

MMR:

Mismatch repair

NER:

Nucleotide excision repair

NHEJ:

Non-homologous end-joining

OR:

Odds ratio

PR:

Progesterone receptor

SNP:

Single nucleotide polymorphism

References

  1. Ponder BA (2001) Cancer genetics. Nature 411(6835):336–341. doi:10.1038/35077207

    Article  PubMed  CAS  Google Scholar 

  2. Balmain A, Gray J, Ponder B (2003) The genetics and genomics of cancer. Nat Genet 33(Suppl):238–244. doi:10.1038/ng1107

    Article  PubMed  CAS  Google Scholar 

  3. Helzlsouer KJ, Harris EL, Parshad R, Fogel S, Bigbee WL, Sanford KK (1995) Familial clustering of breast cancer: possible interaction between DNA repair proficiency and radiation exposure in the development of breast cancer. Int J Cancer 64(1):14–17. doi:10.1002/ijc.2910640105

    Article  PubMed  CAS  Google Scholar 

  4. Helzlsouer KJ, Harris EL, Parshad R, Perry HR, Price FM, Sanford KK (1996) DNA repair proficiency: potential susceptiblity factor for breast cancer. J Natl Cancer Inst 88(11):754–755. doi:10.1093/jnci/88.11.754

    Article  PubMed  CAS  Google Scholar 

  5. Parshad R, Price FM, Bohr VA, Cowans KH, Zujewski JA, Sanford KK (1996) Deficient DNA repair capacity, a predisposing factor in breast cancer. Br J Cancer 74(1):1–5

    PubMed  CAS  Google Scholar 

  6. Jyothish B, Ankathil R, Chandini R, Vinodkumar B, Nayar GS, Roy DD et al (1998) DNA repair proficiency: a potential marker for identification of high risk members in breast cancer families. Cancer Lett 124(1):9–13. doi:10.1016/S0304-3835(97)00419-9

    Article  PubMed  CAS  Google Scholar 

  7. Kovacs E, Stucki D, Weber W, Muller H (1986) Impaired DNA-repair synthesis in lymphocytes of breast cancer patients. Eur J Cancer Clin Oncol 22(7):863–869. doi:10.1016/0277-5379(86)90375-5

    Article  PubMed  CAS  Google Scholar 

  8. Motykiewicz G, Faraglia B, Wang LW, Terry MB, Senie RT, Santella RM (2002) Removal of benzo(a)pyrene diol epoxide (BPDE)-DNA adducts as a measure of DNA repair capacity in lymphoblastoid cell lines from sisters discordant for breast cancer. Environ Mol Mutagen 40(2):93–100. doi:10.1002/em.10095

    Article  PubMed  CAS  Google Scholar 

  9. Roy SK, Trivedi AH, Bakshi SR, Patel SJ, Shukla PH, Bhatavdekar JM et al (2000) Bleomycin-induced chromosome damage in lymphocytes indicates inefficient DNA repair capacity in breast cancer families. J Exp Clin Cancer Res 19(2):169–173

    PubMed  CAS  Google Scholar 

  10. Ramos JM, Ruiz A, Colen R, Lopez ID, Grossman L, Matta JL (2004) DNA repair and breast carcinoma susceptibility in women. Cancer 100(7):1352–1357. doi:10.1002/cncr.20135

    Article  PubMed  CAS  Google Scholar 

  11. Shi Q, Wang LE, Bondy ML, Brewster A, Singletary SE, Wei Q (2004) Reduced DNA repair of benzo(a)pyrene diol epoxide-induced adducts and common XPD polymorphisms in breast cancer patients. Carcinogenesis 25(9):1695–1700

    Article  PubMed  CAS  Google Scholar 

  12. Biggs PJ, Warren W, Venitt S, Stratton MR (1993) Does a genotoxic carcinogen contribute to human breast cancer? The value of mutational spectra in unravelling the aetiology of cancer. Mutagenesis 8(4):275–283. doi:10.1093/mutage/8.4.275

    Article  PubMed  CAS  Google Scholar 

  13. Greenblatt MS, Chappuis PO, Bond JP, Hamel N, Foulkes WD (2001) TP53 mutations in breast cancer associated with BRCA1 or BRCA2 germ-line mutations: distinctive spectrum and structural distribution. Cancer Res 61(10):4092–4097

    PubMed  CAS  Google Scholar 

  14. Mohrenweiser HW, Jones IM (1998) Variation in DNA repair is a factor in cancer susceptibility: a paradigm for the promises and perils of individual and population risk estimation? Mutat Res 400(1–2):15–24. doi:10.1016/S0027-5107(98)00059-1

    PubMed  CAS  Google Scholar 

  15. Mohrenweiser HW, Jones IM (2000) Uncertainty of response to ionizing radiation due to genotype: potential role for variation in DNA repair genes. Radiat Res 154(6):722–723 discussion; pp 723–724

    PubMed  CAS  Google Scholar 

  16. Mohrenweiser HW, Xi T, Vazquez-Matias J, Jones IM (2002) Identification of 127 amino acid substitution variants in screening 37 DNA repair genes in humans. Cancer Epidemiol Biomarkers Prev 11(10 Pt 1):1054–1064

    PubMed  CAS  Google Scholar 

  17. Spitz MR, Wei Q, Dong Q, Amos CI, Wu X (2003) Genetic susceptibility to lung cancer: the role of DNA damage and repair. Cancer Epidemiol Biomarkers Prev 12(8):689–698

    PubMed  CAS  Google Scholar 

  18. Tworoger SS, Sluss P, Hankinson SE (2006) Association between plasma prolactin concentrations and risk of breast cancer among predominately premenopausal women. Cancer Res 66(4):2476–2482. doi:10.1158/0008-5472.CAN-05-3369

    Article  PubMed  CAS  Google Scholar 

  19. Haiman C, Hsu C, de Bakker P, Frasco M, Sheng X, Van Den Berg D et al (2007) A comprehensive assessment of genetic variation in DNA repair pathway genes in relationship with breast cancer risk. Hum Mol Genet 17(6):825–834

    Article  PubMed  CAS  Google Scholar 

  20. Kolonel LN, Henderson BE, Hankin JH, Nomura AM, Wilkens LR, Pike MC et al (2000) A multiethnic cohort in Hawaii and Los Angeles: baseline characteristics. Am J Epidemiol 151(4):346–357

    PubMed  CAS  Google Scholar 

  21. de Bakker PI, Yelensky R, Pe’er I, Gabriel SB, Daly MJ, Altshuler D (2005) Efficiency and power in genetic association studies. Nat Genet 37(11):1217–1223. Epub 2005 Oct 1223

    Google Scholar 

  22. Carlson CS, Eberle MA, Rieder MJ, Yi Q, Kruglyak L, Nickerson DA (2004) Selecting a maximally informative set of single-nucleotide polymorphisms for association analyses using linkage disequilibrium. Am J Hum Genet 74(1):106–120. Epub 2003 Dec 2015

    Google Scholar 

  23. Stram DO, Leigh Pearce C, Bretsky P, Freedman M, Hirschhorn JN, Altshuler D et al (2003) Modeling and E-M estimation of haplotype-specific relative risks from genotype data for a case–control study of unrelated individuals. Hum Hered 55(4):179–190. doi:10.1159/000073202

    Article  PubMed  Google Scholar 

  24. Mueller JC, Lohmussaar E, Magi R, Remm M, Bettecken T, Lichtner P et al (2005) Linkage disequilibrium patterns and tagSNP transferability among European populations. Am J Hum Genet 76:3. doi:10.1086/427925

    Article  Google Scholar 

  25. Li J, Ji L (2005) Adjusting multiple testing in multilocus analyses using the eigenvalues of a correlation matrix. Heredity 95(3):221–227. doi:10.1038/sj.hdy.6800717

    Article  PubMed  CAS  Google Scholar 

  26. Nyholt DR (2004) A simple correction for multiple testing for single-nucleotide polymorphisms in linkage disequilibrium with each other. Am J Hum Genet 74(4):765–769. Epub 2004 Mar 2002

    Google Scholar 

  27. Memisoglu A, Samson L (2000) Base excision repair in yeast and mammals. Mutat Res 451(1–2):39–51. doi:10.1016/S0027-5107(00)00039-7

    PubMed  CAS  Google Scholar 

  28. de Boer J, Hoeijmakers JH (2000) Nucleotide excision repair and human syndromes. Carcinogenesis 21(3):453–460. doi:10.1093/carcin/21.3.453

    Article  PubMed  Google Scholar 

  29. Wood RD (1997) Nucleotide excision repair in mammalian cells. J Biol Chem 272(38):23465–23468. doi:10.1074/jbc.272.38.23465

    Article  PubMed  CAS  Google Scholar 

  30. Karran P (2000) DNA double strand break repair in mammalian cells. Curr Opin Genet Dev 10(2):144–150. doi:10.1016/S0959-437X(00)00069-1

    Article  PubMed  CAS  Google Scholar 

  31. Khanna KK, Jackson SP (2001) DNA double-strand breaks: signaling, repair and the cancer connection. Nat Genet 27(3):247–254. doi:10.1038/85798

    Article  PubMed  CAS  Google Scholar 

  32. Wood RD, Mitchell M, Lindahl T (2005) Human DNA repair genes, 2005. Mutat Res 577(1–2):275–283. doi:10.1016/j.mrfmmm.2005.03.007

    PubMed  CAS  Google Scholar 

  33. Rothwell PJ, Waksman G (2005) Structure and mechanism of DNA polymerases. Adv Protein Chem 71:401–440. doi:10.1016/S0065-3233(04)71011-6

    Article  PubMed  CAS  Google Scholar 

  34. Matullo G, Peluso M, Polidoro S, Guarrera S, Munnia A, Krogh V et al (2003) Combination of DNA repair gene single nucleotide polymorphisms and increased levels of DNA adducts in a population-based study. Cancer Epidemiol Biomarkers Prev 12(7):674–677

    PubMed  CAS  Google Scholar 

  35. Scully R, Livingston DM (2000) In search of the tumour-suppressor functions of BRCA1 and BRCA2. Nature 408(6811):429–432. doi:10.1038/35044000

    Article  PubMed  CAS  Google Scholar 

  36. Welcsh PL, Schubert EL, King MC (1998) Inherited breast cancer: an emerging picture. Clin Genet 54(6):447–458

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We thank Dr. Paul de Bakker at the Broad Institute of Harvard and MIT for selecting tagging SNPs. We thank Pati Soule for her laboratory assistance, Dr. Daniel B. Mirel at the Broad Institute Center for Genotyping and Analysis for his coordination, and Dr. Fredrick Schumacher for generating the LD plots. We also thank the participants in the Nurses’ Health Study for their dedication and commitment. The work is supported by NIH grants CA098233, CA118447, CA067262, and CA050385. The Broad Institute Center for Genotyping and Analysis is supported by grant U54 RR020278-01 from the National Center for Research Resources.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiali Han.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Han, J., Haiman, C., Niu, T. et al. Genetic variation in DNA repair pathway genes and premenopausal breast cancer risk. Breast Cancer Res Treat 115, 613–622 (2009). https://doi.org/10.1007/s10549-008-0089-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10549-008-0089-z

Keywords

Navigation