Skip to main content

Advertisement

Log in

Data driven derivation of cutoffs from a pool of 3,030 Affymetrix arrays to stratify distinct clinical types of breast cancer

  • Preclinical study
  • Published:
Breast Cancer Research and Treatment Aims and scope Submit manuscript

Abstract

Pooling of microarray datasets seems to be a reasonable approach to increase sample size when a heterogeneous disease like breast cancer is concerned. Different methods for the adaption of datasets have been used in the literature. We have analyzed influences of these strategies using a pool of 3,030 Affymetrix U133A microarrays from breast cancer samples. We present data on the resulting concordance with biochemical assays of well known parameters and highlight critical pitfalls. We further propose a method for the inference of cutoff values directly from the data without prior knowledge of the true result. The cutoffs derived by this method displayed high specificity and sensitivity. Markers with a bimodal distribution like ER, PgR, and HER2 discriminate different biological subtypes of disease with distinct clinical courses. In contrast, markers displaying a continuous distribution like proliferation markers as Ki67 rather describe the composition of the mixture of cells in the tumor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Coates A, Goldhirsch A, Gelber R, International Breast Cancer Study Group (2002) Overhauling the breast cancer overview: are subsets subversive? Lancet Oncol 3(9):525–526. doi:10.1016/S1470-2045(02)00842-2

    Article  PubMed  Google Scholar 

  2. Cole BF, Gelber RD, Gelber S, Coates AS, Goldhirsch A (2001) Polychemotherapy for early breast cancer: an overview of the randomised clinical trials with quality-adjusted survival analysis. Lancet 358(9278):277–286. doi:10.1016/S0140-6736(01)05483-6

    Article  CAS  PubMed  Google Scholar 

  3. Sylvester R, Collette L, Duchateau L (2000) The role of meta-analyses in assessing cancer treatments. Eur J Cancer 36(11):1351–1358. doi:10.1016/S0959-8049(00)00125-8

    Article  CAS  PubMed  Google Scholar 

  4. Ein-Dor L, Zuk O, Domany E (2006) Thousands of samples are needed to generate a robust gene list for predicting outcome in cancer. Proc Natl Acad Sci USA 103(15):5923–5928. doi:10.1073/pnas.0601231103

    Article  CAS  PubMed  Google Scholar 

  5. Cheadle C, Vawter MP, Freed WJ, Becker KG (2003) Analysis of microarray data using Z score transformation. J Mol Diagn 5(2):73–81

    CAS  PubMed  Google Scholar 

  6. Eisen MB, Spellman PT, Brown PO, Botstein D (1998) Cluster analysis and display of genome-wide expression patterns. Proc Natl Acad Sci USA 95(25):14863–14868. doi:10.1073/pnas.95.25.14863

    Article  CAS  PubMed  Google Scholar 

  7. Getz G, Levine E, Domany E (2000) Coupled two-way clustering analysis of gene microarray data. Proc Natl Acad Sci USA 97(22):12079–12084. doi:10.1073/pnas.210134797

    Article  CAS  PubMed  Google Scholar 

  8. Gong Y, Yan K, Lin F, Anderson K, Sotiriou C, Andre F, Holmes FA, Valero V, Booser D, Pippen JE Jr, Vukelja S, Gomez H, Mejia J, Barajas LJ, Hess KR, Sneige N, Hortobagyi GN, Pusztai L, Symmans WF (2007) Determination of oestrogen-receptor status and ERBB2 status of breast carcinoma: a gene-expression profiling study. Lancet Oncol 8(3):203–211. doi:10.1016/S1470-2045(07)70042-6

    Article  CAS  PubMed  Google Scholar 

  9. Ahr A, Karn T, Solbach C, Seiter T, Strebhardt K, Holtrich U, Kaufmann M (2002) Identification of high risk breast-cancer patients by gene expression profiling. Lancet 359(9301):131–132. doi:10.1016/S0140-6736(02)07337-3

    Article  PubMed  Google Scholar 

  10. Rody A, Holtrich U, Gaetje R, Gehrmann M, Engels K, von Minckwitz G, Loibl S, Diallo-Danebrock R, Ruckhäberle E, Metzler D, Ahr A, Solbach C, Karn T, Kaufmann M (2007) Poor outcome in estrogen receptor-positive breast cancers predicted by loss of Plexin B1. Clin Cancer Res 13(4):1115–1122. doi:10.1158/1078-0432.CCR-06-2433

    Article  CAS  PubMed  Google Scholar 

  11. Rody A, Karn T, Ruckhäberle E, Hanker L, Metzler D, Müller V, Solbach C, Ahr A, Gätje R, Holtrich U, Kaufmann M (2009) Loss of Plexin B1 is highly prognostic in low proliferating ER positive breast cancers—results of a large scale microarray analysis. Eur J Cancer 45(3):405–413

    Article  CAS  PubMed  Google Scholar 

  12. Ruckhäberle E, Rody A, Engels K, Gaetje R, von Minckwitz G, Schiffmann S, Grösch S, Geisslinger G, Holtrich U, Karn T, Kaufmann M (2008) Microarray analysis of altered sphingolipid metabolism reveals prognostic significance of sphingosine kinase 1 in breast cancer. Breast Cancer Res Treat 112(1):41–52. doi:10.1007/s10549-007-9836-9

    Article  PubMed  CAS  Google Scholar 

  13. Rody A, Karn T, Solbach C, Gaetje R, Munnes M, Kissler S, Ruckhäberle E, Minckwitz GV, Loibl S, Holtrich U, Kaufmann M (2007) The erbB2+ cluster of the intrinsic gene set predicts tumor response of breast cancer patients receiving neoadjuvant chemotherapy with docetaxel, doxorubicin and cyclophosphamide within the GEPARTRIO trial. Breast 16(3):235–240. doi:10.1016/j.breast.2007.02.006

    Article  CAS  PubMed  Google Scholar 

  14. Wang Y, Klijn JG, Zhang Y, Sieuwerts AM, Look MP, Yang F, Talantov D, Timmermans M, Meijer-van Gelder ME, Yu J, Jatkoe T, Berns EM, Atkins D, Foekens JA (2005) Gene-expression profiles to predict distant metastasis of lymph-node-negative primary breast cancer. Lancet 365(9460):671–679

    CAS  PubMed  Google Scholar 

  15. Minn AJ, Gupta GP, Padua D, Bos P, Nguyen DX, Nuyten D, Kreike B, Zhang Y, Wang Y, Ishwaran H, Foekens JA, van de Vijver M, Massagué J (2007) Lung metastasis genes couple breast tumor size and metastatic spread. Proc Natl Acad Sci USA 104(16):6740–6745. doi:10.1073/pnas.0701138104

    Article  CAS  PubMed  Google Scholar 

  16. Creighton CJ, Kent Osborne C, van de Vijver MJ, Foekens JA, Klijn JG, Horlings HM, Nuyten D, Wang Y, Zhang Y, Chamness GC, Hilsenbeck SG, Lee AV, Schiff R (2009) Molecular profiles of progesterone receptor loss in human breast tumors. Breast Cancer Res Treat 114(2):287–299. doi:10.1007/s10549-008-0017-2

    Article  CAS  PubMed  Google Scholar 

  17. Schmidt M, Böhm D, von Törne C, Steiner E, Puhl A, Pilch H, Lehr HA, Hengstler JG, Kölbl H, Gehrmann M (2008) The humoral immune system has a key prognostic impact in node-negative breast cancer. Cancer Res 68(13):5405–5413. doi:10.1158/0008-5472.CAN-07-5206

    Article  CAS  PubMed  Google Scholar 

  18. Desmedt C, Piette F, Loi S, Wang Y, Lallemand F, Haibe-Kains B, Viale G, Delorenzi M, Zhang Y, d’Assignies, Bergh J, Lidereau R, Ellis P, Harris AL, Klijn JG, Foekens JA, Cardoso F, Piccart MJ, Buyse M, Sotiriou C (2007) TRANSBIG Consortium. Strong time dependence of the 76-gene prognostic signature for node-negative breast cancer patients in the TRANSBIG multicenter independent validation series. Clin Cancer Res 13(11):3207–3214

    Article  CAS  PubMed  Google Scholar 

  19. Sotiriou C, Wirapati P, Loi S, Harris A, Fox S, Smeds J, Nordgren H, Farmer P, Praz V, Haibe-Kains B, Desmedt C, Larsimont D, Cardoso F, Peterse H, Nuyten D, Buyse M, Van de Vijver MJ, Bergh J, Piccart M, Delorenzi M (2006) Gene expression profiling in breast cancer: understanding the molecular basis of histologic grade to improve prognosis. J Natl Cancer Inst 98(4):262–272

    Article  CAS  PubMed  Google Scholar 

  20. Loi S, Haibe-Kains B, Desmedt C, Lallemand F, Tutt AM, Gillet C, Ellis P, Harris A, Bergh J, Foekens JA, Klijn JG, Larsimont D, Buyse M, Bontempi G, Delorenzi M, Piccart MJ, Sotiriou C (2007) Definition of clinically distinct molecular subtypes in estrogen receptor-positive breast carcinomas through genomic grade. J Clin Oncol 25(10):1239–1246. doi:10.1200/JCO.2006.07.1522

    Article  CAS  PubMed  Google Scholar 

  21. Loi S, Haibe-Kains B, Desmedt C, Wirapati P, Lallemand F, Tutt AM, Gillet C, Ellis P, Ryder K, Reid JF, Daidone MG, Pierotti MA, Berns EM, Jansen MP, Foekens JA, Delorenzi M, Bontempi G, Piccart MJ, Sotiriou C (2008) Predicting prognosis using molecular profiling in estrogen receptor-positive breast cancer treated with tamoxifen. BMC Genomics 9:239. doi:10.1186/1471-2164-9-239

    Article  PubMed  CAS  Google Scholar 

  22. Zhang Y, Sieuwerts AM, McGreevy M, Casey G, Cufer T, Paradiso A, Harbeck N, Span PN, Hicks DG, Crowe J, Tubbs RR, Budd GT, Lyons J, Sweep FC, Schmitt M, Schittulli F, Golouh R, Talantov D, Wang Y, Foekens JA (2009) The 76-gene signature defines high-risk patients that benefit from adjuvant tamoxifen therapy. Breast Cancer Res Treat. doi:10.1007/s10549-008-0183-2

    Google Scholar 

  23. Pawitan Y, Bjohle J, Amler L, Borg AL, Egyhazi S, Hall P, Han X, Holmberg L, Huang F, Klaar S, Liu ET, Miller L, Nordgren H, Ploner A, Sandelin K, Shaw PM, Smeds J, Skoog L, Wedren S, Bergh J (2005) Gene expression profiling spares early breast cancer patients from adjuvant therapy: derived and validated in two population-based cohorts. Breast Cancer Res 7(6):R953–R964. doi:10.1186/bcr1325

    Article  CAS  PubMed  Google Scholar 

  24. Miller LD, Smeds J, George J, Vega VB, Vergara L, Ploner A, Pawitan Y, Hall P, Klaar S, Liu ET, Bergh J (2005) An expression signature for p53 status in human breast cancer predicts mutation status, transcriptional effects, and patient survival. Proc Natl Acad Sci USA 102(38):13550–13555. doi:10.1073/pnas.0506230102

    Article  CAS  PubMed  Google Scholar 

  25. Ivshina AV, George J, Senko O, Mow B, Putti T, Smeds J, Lindahl T, Pawitan Y, Hall P, Nordgren H, Wong John EL, Liu ET, Bergh J, Kuznetsov VA, Miller LD (2006) Genetic reclassification of histologic grade delineates new clinical subtypes of breast cancer. Cancer Res 66(21):10292–10301. doi:10.1158/0008-5472.CAN-05-4414

    Article  CAS  PubMed  Google Scholar 

  26. Chin K, DeVries S, Fridlyand J, Spellman PT, Roydasgupta R, Kuo WL, Lapuk A, Neve RM, Qian Z, Ryder T, Chen F, Feiler H, Tokuyasu T, Kingsley C, Dairkee S, Meng Z, Chew K, Pinkel D, Jain A, Ljung BM, Esserman L, Albertson DG, Waldman FM, Gray JW (2006) Genomic and transcriptional aberrations linked to breast cancer pathophysiologies. Cancer Cell 10(6):529–541. doi:10.1016/j.ccr.2006.10.009

    Article  CAS  PubMed  Google Scholar 

  27. Minn AJ, Gupta GP, Siegel PM, Bos PD, Shu W, Giri DD, Viale A, Olshen AB, Gerald WL, Massagué J (2005) Genes that mediate breast cancer metastasis to lung. Nature 436(7050):518–524. doi:10.1038/nature03799

    Article  CAS  PubMed  Google Scholar 

  28. Hess KR, Anderson K, Symmans WF, Valero V, Ibrahim N, Mejia JA, Booser D, Theriault RL, Buzdar AU, Dempsey PJ, Rouzier R, Sneige N, Ross JS, Vidaurre T, Gómez HL, Hortobagyi GN, Pusztai L (2006) Pharmacogenomic predictor of sensitivity to preoperative chemotherapy with paclitaxel and fluorouracil, doxorubicin, and cyclophosphamide in breast cancer. J Clin Oncol 24(26):4236–4244. doi:10.1200/JCO.2006.05.6861

    Article  CAS  PubMed  Google Scholar 

  29. Farmer P, Bonnefoi H, Becette V, Tubiana-Hulin M, Fumoleau P, Larsimont D, Macgrogan G, Bergh J, Cameron D, Goldstein D, Duss S, Nicoulaz AL, Brisken C, Fiche M, Delorenzi M, Iggo R (2005) Identification of molecular apocrine breast tumours by microarray analysis. Oncogene 24(29):4660–4671. doi:10.1038/sj.onc.1208561

    Article  CAS  PubMed  Google Scholar 

  30. Miller WR, Larionov AA, Renshaw L, Anderson TJ, White S, Murray J, Murray E, Hampton G, Walker JR, Ho S, Krause A, Evans DB, Dixon JM (2007) Changes in breast cancer transcriptional profiles after treatment with the aromatase inhibitor, letrozole. Pharmacogenet Genom 17(10):813–826. doi:10.1097/FPC.0b013e32820b853a

    Article  CAS  Google Scholar 

  31. The International Genomics Consortium (IGC) The expO project (Expression Project For Oncology) http://www.intgen.org/

  32. Yu K, Ganesan K, Tan LK, Laban M, Wu J, Zhao XD, Li H, Leung CH, Zhu Y, Wei CL, Hooi SC, Miller L, Tan P (2008) A precisely regulated gene expression cassette potently modulates metastasis and survival in multiple solid cancers. PLoS Genet 4(7):e1000129. doi:10.1371/journal.pgen.1000129

    Article  PubMed  CAS  Google Scholar 

  33. Januario T, Lackner MR (2009) Gene expression profiling of 30 human breast cancers. Gene Expression Omnibus Series GSE12763. http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE12763

  34. Richardson AL, Wang ZC, De Nicolo A, Lu X, Brown M, Miron A, Liao X, Iglehart JD, Livingston DM, Ganesan S (2006) X chromosomal abnormalities in basal-like human breast cancer. Cancer Cell 9(2):121–132. doi:10.1016/j.ccr.2006.01.013

    Article  CAS  PubMed  Google Scholar 

  35. Klein A, Wessel R, Graessmann M, Jürgens M, Petersen I, Schmutzler R, Niederacher D, Arnold N, Meindl A, Scherneck S, Seitz S, Graessmann A (2007) Comparison of gene expression data from human and mouse breast cancers: identification of a conserved breast tumor gene set. Int J Cancer 121(3):683–688. doi:10.1002/ijc.22630

    Article  CAS  PubMed  Google Scholar 

  36. Marty B, Maire V, Gravier E, Rigaill G, Vincent-Salomon A, Kappler M, Lebigot I, Djelti F, Tourdès A, Gestraud P, Hupé P, Barillot E, Cruzalegui F, Tucker GC, Stern MH, Thiery JP, Hickman JA, Dubois T (2008) Frequent PTEN genomic alterations and activated phosphatidylinositol 3-kinase pathway in basal-like breast cancer cells. Breast Cancer Res 10(6):R101. doi:10.1186/bcr2204

    Article  PubMed  CAS  Google Scholar 

  37. Chen DT, Nasir A, Culhane A, Venkataramu C, Fulp W, Rubio R, Wang T, Agrawal D, McCarthy SM, Gruidl M, Bloom G, Anderson T, White J, Quackenbush J, Yeatman T (2009) Proliferative genes dominate malignancy-risk gene signature in histologically-normal breast tissue. Breast Cancer Res Treat. doi:10.1007/s10549-009-0344-y

    Google Scholar 

  38. Affymetrix (2001) Statistical algorithms reference guide, technical report. Affymetrix

  39. Gautier L, Cope L, Bolstad BM, Irizarry RA (2004) affy–analysis of Affymetrix GeneChip data at the probe level. Bioinformatics 20(3):307–315. doi:10.1093/bioinformatics/btg405

    Article  CAS  PubMed  Google Scholar 

  40. Gentleman RC, Carey VJ, Bates DM, Bolstad B, Dettling M, Dudoit S, Ellis B, Gautier L, Ge Y, Gentry J, Hornik K, Hothorn T, Huber W, Iacus S, Irizarry R, Leisch F, Li C, Maechler M, Rossini AJ, Sawitzki G, Smith C, Smyth G, Tierney L, Yang JY, Zhang J (2004) Bioconductor: open software development for computational biology and bioinformatics. Genome Biol 5(10):R80. doi:10.1186/gb-2004-5-10-r80

    Article  PubMed  Google Scholar 

  41. Spyratos F, Ferrero-Poüs M, Trassard M, Hacène K, Phillips E, Tubiana-Hulin M, Le Doussal V (2002) Correlation between MIB-1 and other proliferation markers: clinical implications of the MIB-1 cutoff value. Cancer 94(8):2151–2159. doi:10.1002/cncr.10458

    Article  CAS  PubMed  Google Scholar 

  42. de Azambuja E, Cardoso F, de Castro G Jr, Colozza M, Mano MS, Durbecq V, Sotiriou C, Larsimont D, Piccart-Gebhart MJ, Paesmans M (2007) Ki-67 as prognostic marker in early breast cancer: a meta-analysis of published studies involving 12, 155 patients. Br J Cancer 96(10):1504–1513. doi:10.1038/sj.bjc.6603756

    Article  PubMed  CAS  Google Scholar 

  43. Venables WN, Ripley BD (2002) Modern Applied Statistics with S, chap 16.3, 4th edn. Springer. ISBN 0-387-95457-0

  44. Anderson WF, Chen BE, Jatoi I, Rosenberg PS (2006) Effects of estrogen receptor expression and histopathology on annual hazard rates of death from breast cancer. Breast Cancer Res Treat 100(1):121–126. doi:10.1007/s10549-006-9231-y

    Article  CAS  PubMed  Google Scholar 

  45. Jatoi I, Chen BE, Anderson WF, Rosenberg PS (2007) Breast cancer mortality trends in the United States according to estrogen receptor status and age at diagnosis. J Clin Oncol 25(13):1683–1690. doi:10.1200/JCO.2006.09.2106

    Article  PubMed  Google Scholar 

  46. Polyak K (2007) Breast cancer: origins and evolution. J Clin Invest 117(11):3155–3163. doi:10.1172/JCI33295

    Article  CAS  PubMed  Google Scholar 

  47. Collins LC, Botero ML, Schnitt SJ (2005) Bimodal frequency distribution of estrogen receptor immunohistochemical staining results in breast cancer: an analysis of 825 cases. Am J Clin Pathol 123(1):16–20. doi:10.1309/HCF035N9WK40ETJ0

    Article  PubMed  Google Scholar 

  48. Nadji M, Gomez-Fernandez C, Ganjei-Azar P, Morales AR (2005) Immunohistochemistry of estrogen and progesterone receptors reconsidered: experience with 5, 993 breast cancers. Am J Clin Pathol 123(1):21–27. doi:10.1309/4WV79N2GHJ3X1841

    Article  PubMed  Google Scholar 

  49. Barnes DM, Millis RR, Beex LV, Thorpe SM, Leake RE (1998) Increased use of immunohistochemistry for oestrogen receptor measurement in mammary carcinoma: the need for quality assurance. Eur J Cancer 34(11):1677–1682. doi:10.1016/S0959-8049(98)00149-X

    Article  CAS  PubMed  Google Scholar 

  50. Ross JS, Symmans WF, Pusztai L, Hortobagyi GN (2007) Standardizing slide-based assays in breast cancer: hormone receptors, HER2, and sentinel lymph nodes. Clin Cancer Res 13(10):2831–2835. doi:10.1158/1078-0432.CCR-06-2522

    Article  CAS  PubMed  Google Scholar 

  51. Badve SS, Baehner FL, Gray RP, Childs BH, Maddala T, Liu ML, Rowley SC, Shak S, Perez EA, Shulman LJ, Martino S, Davidson NE, Sledge GW, Goldstein LJ, Sparano JA (2008) Estrogen- and progesterone-receptor status in ECOG 2197: comparison of immunohistochemistry by local and central laboratories and quantitative reverse transcription polymerase chain reaction by central laboratory. J Clin Oncol 26(15):2433–2435. doi:10.1200/JCO.2007.13.6424

    Article  Google Scholar 

  52. Mann GB, Fahey VD, Feleppa F, Buchanan MR (2005) Reliance on hormone receptor assays of surgical specimens may compromise outcome in patients with breast cancer. J Clin Oncol 23(22):5148–5154. doi:10.1200/JCO.2005.02.076

    Article  PubMed  Google Scholar 

  53. Ma XJ, Hilsenbeck SG, Wang W, Ding L, Sgroi DC, Bender RA, Osborne CK, Allred DC, Erlander MG (2006) The HOXB13:IL17BR expression index is a prognostic factor in early-stage breast cancer. J Clin Oncol 24(28):4611–4619. doi:10.1200/JCO.2006.06.6944

    Article  CAS  PubMed  Google Scholar 

  54. Sørlie T, Perou CM, Tibshirani R, Aas T, Geisler S, Johnsen H, Hastie T, Eisen MB, van de Rijn M, Jeffrey SS, Thorsen T, Quist H, Matese JC, Brown PO, Botstein D, Eystein Lønning P, Børresen-Dale AL (2001) Gene expression patterns of breast carcinomas distinguish tumor subclasses with clinical implications. Proc Natl Acad Sci USA 98(19):10869–10874. doi:10.1073/pnas.191367098

    Article  PubMed  Google Scholar 

  55. Gruvberger S, Ringnér M, Chen Y, Panavally S, Saal LH, Borg A, Fernö M, Peterson C, Meltzer PS (2001) Estrogen receptor status in breast cancer is associated with remarkably distinct gene expression patterns. Cancer Res 61(16):5979–5984

    CAS  PubMed  Google Scholar 

  56. van‘t Veer LJ, Dai H, van de Vijver MJ, He YD, Hart AA, Mao M, Peterse HL, van der Kooy K, Marton MJ, Witteveen AT, Schreiber GJ, Kerkhoven RM, Roberts C, Linsley PS, Bernards R, Friend SH (2002) Gene expression profiling predicts clinical outcome of breast cancer. Nature 415(6871):530–536. doi:10.1038/415530a

    Article  Google Scholar 

  57. Lusa L, McShane LM, Reid JF, De Cecco L, Ambrogi F, Biganzoli E, Gariboldi M, Pierotti MA (2007) Challenges in projecting clustering results across gene expression-profiling datasets. J Natl Cancer Inst 99(22):1715–1723. doi:10.1093/jnci/djm216

    Article  CAS  PubMed  Google Scholar 

  58. Teschendorff AE, Naderi A, Barbosa-Morais NL, Caldas C (2006) PACK: profile analysis using clustering and kurtosis to find molecular classifiers in cancer. Bioinformatics 22(18):2269–2275. doi:10.1093/bioinformatics/btl174

    Article  CAS  PubMed  Google Scholar 

  59. Ertel A, Tozeren A (2008) Switch-like genes populate cell communication pathways and are enriched for extracellular proteins. BMC Genomics 9:3. doi:10.1186/1471-2164-9-3

    Article  PubMed  CAS  Google Scholar 

  60. Gormley M, Tozeren A (2008) Expression profiles of switch-like genes accurately classify tissue and infectious disease phenotypes in model-based classification. BMC Bioinformatics 9:486. doi:10.1186/1471-2105-9-486

    Article  PubMed  CAS  Google Scholar 

  61. Ertel A, Tozeren A (2008) Human and mouse switch-like genes share common transcriptional regulatory mechanisms for bimodality. BMC Genomics 9(1):628. doi:10.1186/1471-2164-9-628

    Article  PubMed  CAS  Google Scholar 

  62. Sell S, Pierce GB (1994) Maturation arrest of stem cell differentiation is a common pathway for the cellular origin of teratocarcinomas and epithelial cancers. Lab Invest 70(1):6–22

    CAS  PubMed  Google Scholar 

  63. Pardal R, Clarke MF, Morrison SJ (2003) Applying the principles of stem-cell biology to cancer. Nat Rev Cancer 3(12):895–902. doi:10.1038/nrc1232

    Article  CAS  PubMed  Google Scholar 

  64. Sanai N, Alvarez-Buylla A, Berger MS (2005) Neural stem cells and the origin of gliomas. N Engl J Med 353(8):811–822. doi:10.1056/NEJMra043666

    Article  CAS  PubMed  Google Scholar 

  65. Reya T, Morrison SJ, Clarke MF, Weissman IL (2001) Stem cells, cancer, and cancer stem cells. Nature 414(6859):105–111. doi:10.1038/35102167

    Article  CAS  PubMed  Google Scholar 

  66. Jordan CT, Guzman ML, Noble M (2006) Cancer stem cells. N Engl J Med 355(12):1253–1261. doi:10.1056/NEJMra061808

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Samira Adel and Katherina Kourtis for expert technical assistance and anonymous reviewers for their insightful suggestions. This work was supported by grants from the Deutsche Krebshilfe, the Margarete Bonifer-Stiftung, Bad Soden, the BANSS-Stiftung, Biedenkopf, and the Dr. Robert Pfleger-Stiftung, Bamberg. The efforts of the IGC and expO [31] are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Karn.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 429 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Karn, T., Metzler, D., Ruckhäberle, E. et al. Data driven derivation of cutoffs from a pool of 3,030 Affymetrix arrays to stratify distinct clinical types of breast cancer. Breast Cancer Res Treat 120, 567–579 (2010). https://doi.org/10.1007/s10549-009-0416-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10549-009-0416-z

Keywords

Navigation