Skip to main content

Advertisement

Log in

An integrative genomic and transcriptomic analysis reveals molecular pathways and networks regulated by copy number aberrations in basal-like, HER2 and luminal cancers

  • Preclinical study
  • Published:
Breast Cancer Research and Treatment Aims and scope Submit manuscript

Abstract

Breast cancer is a heterogeneous disease caused by the accumulation of genetic changes in neoplastic cells. We hypothesised that molecular subtypes of breast cancer may be driven by specific constellations of genes whose expression is regulated by gene copy number aberrations. To address this question, we analysed a series of 48 microdissected grade III ductal carcinomas using high resolution microarray comparative genomic hybridisation and mRNA expression arrays. There were 5,931 genes whose expression significantly correlates with copy number identified; out of these, 1,897 genes were significantly differentially expressed between basal-like, HER2 and luminal tumours. Ingenuity Pathway Analysis (IPA) revealed that ‘G1/S cell cycle regulation’ and ‘BRCA1 in DNA damage control’ pathways were significantly enriched for genes whose expression correlates with copy number and are differentially expressed between the molecular subtypes of breast cancer. IPA of genes whose expression significantly correlates with copy number in each molecular subtype individually revealed that canonical pathways involved in oestrogen receptor (ER) signalling and DNA repair are enriched for these genes. We also identified 32, 157 and 265 genes significantly overexpressed when amplified in basal-like, HER2 and luminal cancers, respectively. These lists include known and novel potential therapeutic targets (e.g. HER2 and PPM1D in HER2 cancers). Our results provide strong circumstantial evidence that different patterns of genetic aberrations in distinct molecular subtypes of breast cancer contribute to their specific transcriptomic profiles and that biological phenomena characteristic of each subtype (e.g. proliferation, HER2 and ER signalling) may be driven by specific patterns of copy number aberrations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Natrajan R, Lambros MB, Rodriguez-Pinilla SM et al (2009) Tiling path genomic profiling of grade 3 invasive ductal breast cancers. Clin Cancer Res 15:2711–2722

    Article  CAS  PubMed  Google Scholar 

  2. Bergamaschi A, Kim YH, Wang P et al (2006) Distinct patterns of DNA copy number alteration are associated with different clinicopathological features and gene-expression subtypes of breast cancer. Genes Chromosomes Cancer 45:1033–1040

    Article  CAS  PubMed  Google Scholar 

  3. Chin K, DeVries S, Fridlyand J et al (2006) Genomic and transcriptional aberrations linked to breast cancer pathophysiologies. Cancer Cell 10:529–541

    Article  CAS  PubMed  Google Scholar 

  4. Chin SF, Teschendorff AE, Marioni JC et al (2007) High-resolution aCGH and expression profiling identifies a novel genomic subtype of ER negative breast cancer. Genome Biol 8:R215

    Article  PubMed  Google Scholar 

  5. Hu X, Stern HM, Ge L et al (2009) Genetic alterations and oncogenic pathways associated with breast cancer subtypes. Mol Cancer Res 7:511–522

    Article  CAS  PubMed  Google Scholar 

  6. Mackay A, Tamber N, Fenwick K, et al. (2009) A high-resolution integrated analysis of genetic and expression profiles of breast cancer cell lines. Breast Cancer Res Treat. doi:10.1007/s10549-008-0296-7

  7. Neve RM, Chin K, Fridlyand J et al (2006) A collection of breast cancer cell lines for the study of functionally distinct cancer subtypes. Cancer Cell 10:515–527

    Article  CAS  PubMed  Google Scholar 

  8. Perou CM, Sorlie T, Eisen MB et al (2000) Molecular portraits of human breast tumours. Nature 406:747–752

    Article  CAS  PubMed  Google Scholar 

  9. Sorlie T, Perou CM, Tibshirani R et al (2001) Gene expression patterns of breast carcinomas distinguish tumor subclasses with clinical implications. Proc Natl Acad Sci USA 98:10869–10874

    Article  CAS  PubMed  Google Scholar 

  10. Hicks J, Krasnitz A, Lakshmi B et al (2006) Novel patterns of genome rearrangement and their association with survival in breast cancer. Genome Res 16:1465–1479

    Article  CAS  PubMed  Google Scholar 

  11. Adelaide J, Finetti P, Bekhouche I et al (2007) Integrated profiling of basal and luminal breast cancers. Cancer Res 67:11565–11575

    Article  CAS  PubMed  Google Scholar 

  12. Natrajan R, Lambros MB, Geyer FC et al (2009) Loss of 16q in high grade breast cancer is associated with estrogen receptor status: Evidence for progression in tumors with a luminal phenotype? Genes Chromosomes Cancer 48:351–365

    Article  CAS  PubMed  Google Scholar 

  13. Heiser LM, Wang NJ, Talcott CL et al (2009) Integrated analysis of breast cancer cell lines reveals unique signaling pathways. Genome Biol 10:R31

    Article  PubMed  Google Scholar 

  14. Marchio C, Iravani M, Natrajan R et al (2008) Genomic and immunophenotypical characterization of pure micropapillary carcinomas of the breast. J Pathol 215:398–410

    Article  CAS  PubMed  Google Scholar 

  15. Simpson PT, Reis-Filho JS, Lambros MB et al (2008) Molecular profiling pleomorphic lobular carcinomas of the breast: evidence for a common molecular genetic pathway with classic lobular carcinomas. J Pathol 215:231–244

    Article  CAS  PubMed  Google Scholar 

  16. Weigelt B, Horlings HM, Kreike B et al (2008) Refinement of breast cancer classification by molecular characterization of histological special types. J Pathol 216:141–150

    Article  CAS  PubMed  Google Scholar 

  17. Wolff AC, Hammond ME, Schwartz JN et al (2007) American Society of Clinical Oncology/College of American Pathologists guideline recommendations for human epidermal growth factor receptor 2 testing in breast cancer. J Clin Oncol 25:118–145

    Article  CAS  PubMed  Google Scholar 

  18. Nielsen TO, Hsu FD, Jensen K et al (2004) Immunohistochemical and clinical characterization of the basal-like subtype of invasive breast carcinoma. Clin Cancer Res 10:5367–5374

    Article  CAS  PubMed  Google Scholar 

  19. Marchio C, Natrajan R, Shiu KK et al (2008) The genomic profile of HER2-amplified breast cancers: the influence of ER status. J Pathol 216:399–407

    Article  CAS  PubMed  Google Scholar 

  20. Huang J, Gusnanto A, O’Sullivan K et al (2007) Robust smooth segmentation approach for array CGH data analysis. Bioinformatics 23:2463–2469

    Article  CAS  PubMed  Google Scholar 

  21. Arriola E, Marchio C, Tan DS et al (2008) Genomic analysis of the HER2/TOP2A amplicon in breast cancer and breast cancer cell lines. Lab Invest 88:491–503

    Article  CAS  PubMed  Google Scholar 

  22. Reis-Filho JS, Simpson PT, Jones C et al (2005) Pleomorphic lobular carcinoma of the breast: role of comprehensive molecular pathology in characterization of an entity. J Pathol 207:1–13

    Article  CAS  PubMed  Google Scholar 

  23. Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate: a practical and powerful approach to multiple testing. J Roy Stat Soc B 57:289–300

    Google Scholar 

  24. Hu Z, Fan C, Oh DS et al (2006) The molecular portraits of breast tumors are conserved across microarray platforms. BMC Genomics 7:96

    Article  PubMed  Google Scholar 

  25. Eisen MB, Spellman PT, Brown PO et al (1998) Cluster analysis and display of genome-wide expression patterns. Proc Natl Acad Sci USA 95:14863–14868

    Article  CAS  PubMed  Google Scholar 

  26. Tusher VG, Tibshirani R, Chu G (2001) Significance analysis of microarrays applied to the ionizing radiation response. Proc Natl Acad Sci USA 98:5116–5121

    Article  CAS  PubMed  Google Scholar 

  27. Weigelt B, Kreike B, Reis-Filho JS (2008) Metaplastic breast carcinomas are basal-like breast cancers: a genomic profiling analysis. Breast Cancer Res Treat. doi:10.1007/s10549-008-0197-9

  28. Reis-Filho JS, Savage K, Lambros MB et al (2006) Cyclin D1 protein overexpression and CCND1 amplification in breast carcinomas: an immunohistochemical and chromogenic in situ hybridisation analysis. Mod Pathol 19:999–1009

    Article  CAS  PubMed  Google Scholar 

  29. Reis-Filho JS, Pinheiro C, Lambros MB et al (2006) EGFR amplification and lack of activating mutations in metaplastic breast carcinomas. J Pathol 209:445–453

    Article  CAS  PubMed  Google Scholar 

  30. Tan DS, Lambros MB, Rayter S et al (2009) PPM1D is a potential therapeutic target in ovarian clear cell carcinomas. Clin Cancer Res 15:2269–2280

    Article  CAS  PubMed  Google Scholar 

  31. Parker JS, Mullins M, Cheang MC et al (2009) Supervised risk predictor of breast cancer based on intrinsic subtypes. J Clin Oncol 27:1160–1167

    Article  PubMed  Google Scholar 

  32. Cheng KW, Lahad JP, Kuo WL et al (2004) The RAB25 small GTPase determines aggressiveness of ovarian and breast cancers. Nat Med 10:1251–1256

    Article  CAS  PubMed  Google Scholar 

  33. Fiddes RJ, Campbell DH, Janes PW et al (1998) Analysis of Grb7 recruitment by heregulin-activated erbB receptors reveals a novel target selectivity for erbB3. J Biol Chem 273:7717–7724

    Article  CAS  PubMed  Google Scholar 

  34. Hata T, Furukawa T, Sunamura M et al (2005) RNA interference targeting aurora kinase a suppresses tumor growth and enhances the taxane chemosensitivity in human pancreatic cancer cells. Cancer Res 65:2899–2905

    Article  CAS  PubMed  Google Scholar 

  35. Rayter S, Elliott R, Travers J et al (2008) A chemical inhibitor of PPM1D that selectively kills cells overexpressing PPM1D. Oncogene 27:1036–1044

    Article  CAS  PubMed  Google Scholar 

  36. Reis-Filho JS, Simpson PT, Turner NC et al (2006) FGFR1 emerges as a potential therapeutic target for lobular breast carcinomas. Clin Cancer Res 12:6652–6662

    Article  CAS  PubMed  Google Scholar 

  37. Kao J, Pollack JR (2006) RNA interference-based functional dissection of the 17q12 amplicon in breast cancer reveals contribution of coamplified genes. Genes Chromosomes Cancer 45:761–769

    Article  CAS  PubMed  Google Scholar 

  38. Jiang L, Zeng X, Yang H et al (2008) Oral cancer overexpressed 1 (ORAOV1): a regulator for the cell growth and tumor angiogenesis in oral squamous cell carcinoma. Int J Cancer 123:1779–1786

    Article  CAS  PubMed  Google Scholar 

  39. Orsetti B, Nugoli M, Cervera N et al (2004) Genomic and expression profiling of chromosome 17 in breast cancer reveals complex patterns of alterations and novel candidate genes. Cancer Res 64:6453–6460

    Article  CAS  PubMed  Google Scholar 

  40. Guan Y, Kuo WL, Stilwell JL et al (2007) Amplification of PVT1 contributes to the pathophysiology of ovarian and breast cancer. Clin Cancer Res 13:5745–5755

    Article  CAS  PubMed  Google Scholar 

  41. Subhawong AP, Subhawong T, Nassar H et al (2009) Most basal-like breast carcinomas demonstrate the same Rb-/p16+ immunophenotype as the HPV-related poorly differentiated squamous cell carcinomas which they resemble morphologically. Am J Surg Pathol 33:163–175

    Article  PubMed  Google Scholar 

  42. Reis-Filho JS, Tutt AN (2008) Triple negative tumours: a critical review. Histopathology 52:108–118

    Article  CAS  PubMed  Google Scholar 

  43. Rakha EA, Reis-Filho JS, Ellis IO (2008) Basal-like breast cancer: a critical review. J Clin Oncol 26:2568–2581

    Article  PubMed  Google Scholar 

  44. Bernard-Pierrot I, Gruel N, Stransky N et al (2008) Characterization of the recurrent 8p11-12 amplicon identifies PPAPDC1B, a phosphatase protein, as a new therapeutic target in breast cancer. Cancer Res 68:7165–7175

    Article  CAS  PubMed  Google Scholar 

  45. Eswaran J, Soundararajan M, Knapp S (2009) Targeting group II PAKs in cancer and metastasis. Cancer Metastasis Rev 28:209–217

    Article  CAS  PubMed  Google Scholar 

  46. Ihle NT, Powis G (2009) Take your PIK: phosphatidylinositol 3-kinase inhibitors race through the clinic and toward cancer therapy. Mol Cancer Ther 8:1–9

    Article  CAS  PubMed  Google Scholar 

  47. Crowder RJ, Phommaly C, Tao Y, et al. (2009) PIK3CA and PIK3CB inhibition produce synthetic lethality when combined with estrogen deprivation in estrogen receptor-positive breast cancer. Cancer Res 69:3955–3962

    Article  CAS  PubMed  Google Scholar 

  48. Desmedt C, Haibe-Kains B, Wirapati P et al (2008) Biological processes associated with breast cancer clinical outcome depend on the molecular subtypes. Clin Cancer Res 14:5158–5165

    Article  CAS  PubMed  Google Scholar 

  49. Wirapati P, Sotiriou C, Kunkel S et al (2008) Meta-analysis of gene expression profiles in breast cancer: toward a unified understanding of breast cancer subtyping and prognosis signatures. Breast Cancer Res 10:R65

    Article  PubMed  Google Scholar 

  50. Reis-Filho JS, Drury S, Lambros MB et al (2008) ESR1 gene amplification in breast cancer: a common phenomenon? Nat Genet 40:809–810 author reply 10-2

    Article  CAS  PubMed  Google Scholar 

  51. Brown LA, Hoog J, Chin SF et al (2008) ESR1 gene amplification in breast cancer: a common phenomenon? Nat Genet 40:806–807 author reply 10-2

    Article  CAS  PubMed  Google Scholar 

  52. Horlings HM, Bergamaschi A, Nordgard SH et al (2008) ESR1 gene amplification in breast cancer: a common phenomenon? Nat Genet 40:807–808 author reply 10-2

    Article  CAS  PubMed  Google Scholar 

  53. Vincent-Salomon A, Gruel N, Lucchesi C et al (2007) Identification of typical medullary breast carcinoma as a genomic sub-group of basal-like carcinomas, a heterogeneous new molecular entity. Breast Cancer Res 9:R24

    Article  PubMed  Google Scholar 

  54. Lakhani SR, Reis-Filho JS, Fulford L et al (2005) Prediction of BRCA1 status in patients with breast cancer using estrogen receptor and basal phenotype. Clin Cancer Res 11:5175–5180

    Article  CAS  PubMed  Google Scholar 

  55. Foulkes WD, Stefansson IM, Chappuis PO et al (2003) Germline BRCA1 mutations and a basal epithelial phenotype in breast cancer. J Natl Cancer Inst 95:1482–1485

    CAS  PubMed  Google Scholar 

  56. Turner NC, Reis-Filho JS (2006) Basal-like breast cancer and the BRCA1 phenotype. Oncogene 25:5846–5853

    Article  CAS  PubMed  Google Scholar 

  57. Turner NC, Reis-Filho JS, Russell AM et al (2007) BRCA1 dysfunction in sporadic basal-like breast cancer. Oncogene 26:2126–2132

    Article  CAS  PubMed  Google Scholar 

  58. Ashworth A (2008) A synthetic lethal therapeutic approach: poly(ADP) ribose polymerase inhibitors for the treatment of cancers deficient in DNA double-strand break repair. J Clin Oncol 26:3785–3790

    Article  CAS  PubMed  Google Scholar 

  59. Sorlie T, Tibshirani R, Parker J et al (2003) Repeated observation of breast tumor subtypes in independent gene expression data sets. Proc Natl Acad Sci USA 100:8418–8423

    Article  CAS  PubMed  Google Scholar 

  60. Zhang H, Li Z, Viklund EK et al (2002) P21-activated kinase 4 interacts with integrin alpha v beta 5 and regulates alpha v beta 5-mediated cell migration. J Cell Biol 158:1287–1297

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was funded in part by Breakthrough Breast Cancer. B. Weigelt is supported by a Cancer Research UK Fellowship, J Palacios by RETICS: RD06/0020/0013 and PI 08/6080971 from Instituto de Salud Carlos III and P07-CVI-03100 from Consejería de Innovación Junta de Andalucía.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Rachael Natrajan or Jorge S. Reis-Filho.

Additional information

Rachael Natrajan and Britta Weigelt contributed equally to the present study.

Electronic supplementary material

Below is the link to the electronic supplementary material.

(PDF 4,584 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Natrajan, R., Weigelt, B., Mackay, A. et al. An integrative genomic and transcriptomic analysis reveals molecular pathways and networks regulated by copy number aberrations in basal-like, HER2 and luminal cancers. Breast Cancer Res Treat 121, 575–589 (2010). https://doi.org/10.1007/s10549-009-0501-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10549-009-0501-3

Keywords

Navigation