Skip to main content

Advertisement

Log in

The predictive value of the 70-gene signature for adjuvant chemotherapy in early breast cancer

  • Clinical trial
  • Published:
Breast Cancer Research and Treatment Aims and scope Submit manuscript

Abstract

Multigene assays have been developed and validated to determine the prognosis of breast cancer. In this study, we assessed the additional predictive value of the 70-gene MammaPrint signature for chemotherapy (CT) benefit in addition to endocrine therapy (ET) from pooled study series. For 541 patients who received either ET (n = 315) or ET + CT (n = 226), breast cancer-specific survival (BCSS) and distant disease-free survival (DDFS) at 5 years were assessed separately for the 70-gene high and low risk groups. The 70-gene signature classified 252 patients (47%) as low risk and 289 (53%) as high risk. Within the 70-gene low risk group, BCSS was 97% for the ET group and 99% for the ET + CT group at 5 years with a non-significant univariate hazard ratio (HR) of 0.58 (95% CI 0.07–4.98; P = 0.62). In the 70-gene high risk group, BCSS was 81% (ET group) and 94% (ET + CT group) at 5 years with a significant HR of 0.21 (95% CI 0.07–0.59; P < 0.01). DDFS was 93% (ET) versus 99% (ET + CT), respectively, in the 70-gene low risk group, HR 0.26 (95% CI 0.03–2.02; P = 0.20). In the high risk group DDFS was 76 versus 88%, HR of 0.35 (95% CI 0.17–0.71; P < 0.01). Results were similar in multivariate analysis, showing significant survival benefit by adding CT in the 70-gene high risk group. A significant and clinically meaningful benefit was observed by adding chemotherapy to endocrine treatment in 70-gene high risk patients. This benefit was not significant in low risk patients, who were at such low risk for recurrence and cancer-related death, that adding CT does not appear to be clinically meaningful.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Trialists’ Collaborative Group (EBCTCG) et al (2005) Effects of chemotherapy and hormonal therapy for early breast cancer on recurrence and 15-year survival: an overview of the randomised trials. Lancet 365(9472):1687–1717

    Article  CAS  Google Scholar 

  2. National Comprehensive Cancer Network. Practice Guidelines in Oncology—v.1.2010. http://www.nccn.org/professionals/physician_gls/PDF/breast.pdf. 12-11-2009

  3. Goldhirsch A, Ingle JN, Gelber RD, Coates AS, Thurlimann B, Senn HJ (2009) Thresholds for therapies: highlights of the St Gallen International Expert Consensus on the primary therapy of early breast cancer 2009. Ann Oncol 20(8):1319–1329

    Article  CAS  PubMed  Google Scholar 

  4. Dowsett M, Goldhirsch A, Hayes DF, Senn HJ, Wood W, Viale G (2007) International Web-based consultation on priorities for translational breast cancer research. Breast Cancer Res 9(6):R81

    Article  PubMed  Google Scholar 

  5. van’t Veer LJ, Dai H, van de Vijver MJ, He YD, Hart AA, Mao M et al (2002) Gene expression profiling predicts clinical outcome of breast cancer. Nature 415(6871):530–536

    Article  Google Scholar 

  6. van de Vijver MJ, He YD, van’t Veer LJ, Dai H, Hart AA, Voskuil DW et al (2002) A gene-expression signature as a predictor of survival in breast cancer. N Engl J Med 347(25):1999–2009

    Article  PubMed  Google Scholar 

  7. Paik S, Shak S, Tang G, Kim C, Baker J, Cronin M (2004) A multigene assay to predict recurrence of tamoxifen-treated, node-negative breast cancer. N Engl J Med 351(27):2817–2826

    Article  CAS  PubMed  Google Scholar 

  8. Habel LA, Shak S, Jacobs MK, Capra A, Alexander C, Pho M et al (2006) A population-based study of tumor gene expression and risk of breast cancer death among lymph node-negative patients. Breast Cancer Res 8(3):R25

    Article  PubMed  CAS  Google Scholar 

  9. Sotiriou C, Wirapati P, Loi S, Harris A, Fox S, Smeds J et al (2006) Gene expression profiling in breast cancer: understanding the molecular basis of histologic grade to improve prognosis. J Natl Cancer Inst 98(4):262–272

    CAS  PubMed  Google Scholar 

  10. Ma XJ, Wang Z, Ryan PD, Isakoff SJ, Barmettler A, Fuller A et al (2004) A two-gene expression ratio predicts clinical outcome in breast cancer patients treated with tamoxifen. Cancer Cell 5(6):607–616

    Article  CAS  PubMed  Google Scholar 

  11. Ma XJ, Salunga R, Dahiya S, Wang W, Carney E, Durbecq V et al (2008) A five-gene molecular grade index and HOXB13:IL17BR are complementary prognostic factors in early stage breast cancer. Clin Cancer Res 14(9):2601–2608

    Article  CAS  PubMed  Google Scholar 

  12. Paik S, Tang G, Shak S, Kim C, Baker J, Kim W et al (2006) Gene expression and benefit of chemotherapy in women with node-negative, estrogen receptor-positive breast cancer. J Clin Oncol 24(23):3726–3734

    Article  CAS  PubMed  Google Scholar 

  13. Buyse M, Loi S, van’t Veer L, Viale G, Delorenzi M, Glas AM et al (2006) Validation and clinical utility of a 70-gene prognostic signature for women with node-negative breast cancer. J Natl Cancer Inst 98(17):1183–1192

    Article  CAS  PubMed  Google Scholar 

  14. Bueno-de-Mesquita JM, Linn SC, Keijzer R, Wesseling J, Nuyten DS, van Krimpen C et al (2009) Validation of 70-gene prognosis signature in node-negative breast cancer. Breast Cancer Res Treat 117(3):483–495

    Article  CAS  PubMed  Google Scholar 

  15. Knauer M, Wenzl E, Rutgers EJT, Linn SC, van’t Veer LJ (2009) Gene expression profiling in breast cancer—design of a pooled database to address open questions. Eur Surg 41(5):221–227

    Article  Google Scholar 

  16. Bueno-de-Mesquita JM, van Harten WH, Retel VP, van’t Veer LJ, van Dam FS, Karsenberg K et al (2007) Use of 70-gene signature to predict prognosis of patients with node-negative breast cancer: a prospective community-based feasibility study (RASTER). Lancet Oncol 8(12):1079–1087

    Article  CAS  PubMed  Google Scholar 

  17. Mook S, Schmidt MK, Viale G, Pruneri G, Eekhout I, Floore A et al (2009) The 70-gene prognosis-signature predicts disease outcome in breast cancer patients with 1–3 positive lymph nodes in an independent validation study. Breast Cancer Res Treat 116(2):295–302

    Article  CAS  PubMed  Google Scholar 

  18. Mook S, Schmidt MK, Weigelt B, Kreike B, Eekhout I, van de Vijver MJ et al (2009) The 70-gene prognosis signature predicts early metastasis in breast cancer patients between 55 and 70 years of age. Ann Oncol. doi:10.1093/annonc/mdp388

  19. Glas AM, Floore A, Delahaye LJ, Witteveen AT, Pover RC, Bakx N et al (2006) Converting a breast cancer microarray signature into a high-throughput diagnostic test. BMC Genomics 7:278

    Article  PubMed  CAS  Google Scholar 

  20. Ioannidis JP (2006) Gene expression profiling for individualized breast cancer chemotherapy: success or not? Nat Clin Pract Oncol 3(10):538–539

    Article  PubMed  Google Scholar 

  21. Simmonds MC, Higgins JP, Stewart LA, Tierney JF, Clarke MJ, Thompson SG (2005) Meta-analysis of individual patient data from randomized trials: a review of methods used in practice. Clin Trials 2(3):209–217

    Article  PubMed  Google Scholar 

  22. Cardoso F, van’t Veer L, Rutgers E, Loi S, Mook S, Piccart-Gebhart MJ (2008) Clinical application of the 70-gene profile: the MINDACT trial. J Clin Oncol 26(5):729–735

    Article  PubMed  Google Scholar 

  23. Sparano JA (2006) TAILORx: trial assigning individualized options for treatment (Rx). Clin Breast Cancer 7(4):347–350

    Article  PubMed  Google Scholar 

  24. Albain KS, Barlow WE, Shak S, Hortobagyi GN, Livingston RB, Yeh IT et al (2010) Prognostic and predictive value of the 21-gene recurrence score assay in postmenopausal women with node-positive, oestrogen-receptor-positive breast cancer on chemotherapy: a retrospective analysis of a randomised trial. Lancet Oncol 11(1):55–65

    Article  CAS  PubMed  Google Scholar 

  25. Sotiriou C, Pusztai L (2009) Gene-expression signatures in breast cancer. N Engl J Med 360(8):790–800

    Article  CAS  PubMed  Google Scholar 

  26. Ayers M, Symmans WF, Stec J, Damokosh AI, Clark E, Hess K et al (2004) Gene expression profiles predict complete pathologic response to neoadjuvant paclitaxel and fluorouracil, doxorubicin, and cyclophosphamide chemotherapy in breast cancer. J Clin Oncol 22(12):2284–2293

    Article  CAS  PubMed  Google Scholar 

  27. Bonnefoi H, Potti A, Delorenzi M, Mauriac L, Campone M, Tubiana-Hulin M et al (2007) Validation of gene signatures that predict the response of breast cancer to neoadjuvant chemotherapy: a substudy of the EORTC 10994/BIG 00-01 clinical trial. Lancet Oncol 8(12):1071–1078

    Article  CAS  PubMed  Google Scholar 

  28. Hess KR, Anderson K, Symmans WF, Valero V, Ibrahim N, Mejia JA et al (2006) Pharmacogenomic predictor of sensitivity to preoperative chemotherapy with paclitaxel and fluorouracil, doxorubicin, and cyclophosphamide in breast cancer. J Clin Oncol 24(26):4236–4244

    Article  CAS  PubMed  Google Scholar 

  29. Liedtke C, Hatzis C, Symmans WF, Desmedt C, Haibe-Kains B, Valero V et al (2009) Genomic grade index is associated with response to chemotherapy in patients with breast cancer. J Clin Oncol 27(19):3185–3191

    Article  PubMed  Google Scholar 

  30. Chang JC, Wooten EC, Tsimelzon A, Hilsenbeck SG, Gutierrez MC, Elledge R et al (2003) Gene expression profiling for the prediction of therapeutic response to docetaxel in patients with breast cancer. Lancet 362(9381):362–369

    Article  CAS  PubMed  Google Scholar 

  31. Dressman HK, Hans C, Bild A, Olson JA, Rosen E, Marcom PK et al (2006) Gene expression profiles of multiple breast cancer phenotypes and response to neoadjuvant chemotherapy. Clin Cancer Res 12(3 Pt 1):819–826

    Article  CAS  PubMed  Google Scholar 

  32. Folgueira MA, Carraro DM, Brentani H, Patrao DF, Barbosa EM, Netto MM et al (2005) Gene expression profile associated with response to doxorubicin-based therapy in breast cancer. Clin Cancer Res 11(20):7434–7443

    Article  CAS  PubMed  Google Scholar 

  33. Gianni L, Zambetti M, Clark K, Baker J, Cronin M, Wu J et al (2005) Gene expression profiles in paraffin-embedded core biopsy tissue predict response to chemotherapy in women with locally advanced breast cancer. J Clin Oncol 23(29):7265–7277

    Article  CAS  PubMed  Google Scholar 

  34. Iwao-Koizumi K, Matoba R, Ueno N, Kim SJ, Ando A, Miyoshi Y et al (2005) Prediction of docetaxel response in human breast cancer by gene expression profiling. J Clin Oncol 23(3):422–431

    Article  CAS  PubMed  Google Scholar 

  35. Park S, Shimizu C, Shimoyama T, Takeda M, Ando M, Kohno T et al (2006) Gene expression profiling of ATP-binding cassette (ABC) transporters as a predictor of the pathologic response to neoadjuvant chemotherapy in breast cancer patients. Breast Cancer Res Treat 99(1):9–17

    Article  CAS  PubMed  Google Scholar 

  36. Potti A, Dressman HK, Bild A, Riedel RF, Chan G, Sayer R et al (2006) Genomic signatures to guide the use of chemotherapeutics. Nat Med 12(11):1294–1300

    Article  CAS  PubMed  Google Scholar 

  37. Thuerigen O, Schneeweiss A, Toedt G, Warnat P, Hahn M, Kramer H et al (2006) Gene expression signature predicting pathologic complete response with gemcitabine, epirubicin, and docetaxel in primary breast cancer. J Clin Oncol 24(12):1839–1845

    Article  CAS  PubMed  Google Scholar 

  38. Straver ME, Glas AM, Hannemann J, Wesseling J, van de Vijver MJ, Rutgers EJ et al (2010) The 70-gene signature as a response predictor for neoadjuvant chemotherapy in breast cancer. Breast Cancer Res Treat 119(3):551–558

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the Austrian Society of Surgery and Agendia BV. Both provided unrestricted educational grants for the work of M. Knauer. We are indebted to Femke de Snoo, MD PhD for critically reading the manuscript and providing helpful comments and to Marleen Kok for providing part of the data used for our analyses.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laura J. van ’t Veer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Knauer, M., Mook, S., Rutgers, E.J.T. et al. The predictive value of the 70-gene signature for adjuvant chemotherapy in early breast cancer. Breast Cancer Res Treat 120, 655–661 (2010). https://doi.org/10.1007/s10549-010-0814-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10549-010-0814-2

Keywords

Navigation