Skip to main content

Advertisement

Log in

Tumor–stroma ratio in the primary tumor is a prognostic factor in early breast cancer patients, especially in triple-negative carcinoma patients

  • Preclinical Study
  • Published:
Breast Cancer Research and Treatment Aims and scope Submit manuscript

Abstract

Stroma tissue surrounding cancer cells plays an important role in tumor development and behavior. In colorectal cancer, it has been found that the amount of stroma within the primary tumor is of prognostic value. We therefore have evaluated the prognostic value of this tumor–stroma ratio for breast cancer. A cohort of 574 early breast cancer patients, primarily treated with surgery between 1985 and 1994 was analyzed for the tumor–stroma ratio. The percentage of stroma was visually estimated on Haematoxylin-Eosin (H&E) stained histological sections. Patients with more than 50% intra-tumor stroma were quantified as stroma rich and patients with less than 50% as stroma poor. For the total group of patients, stroma-rich tumors had a shorter relapse-free period (RFP) (P = 0.001) and overall survival (OS) (P = 0.025) compared to stroma-poor tumors. Tumor–stroma ratio was an independent prognostic parameter for the total group of patients (P < 0.001) and also in stratified analysis based on systemic treatment. Importantly, in the triple-negative cancer subpopulation, patients with stroma-rich tumors had a 2.92 times higher risk of relapse (P = 0.006) compared to those with stroma-poor tumors, independently of other clinico-pathological parameters. Five-year RFP-rates for triple-negative cancer patients with stroma-rich compared to stroma-poor tumors were 56 and 81%, respectively. Tumor–stroma ratio has proven to be an independent prognostic factor for RFP in breast cancer patients and especially in the triple-negative cancer subpopulation. Tumor–stroma ratio could be easily implemented in routine daily pathology diagnostics, as it is simple to determine, reproducible, and performed in quick time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Sotiriou C, Pusztai L (2009) Gene-expression signatures in breast cancer. N Engl J 360:790–800

    Article  CAS  Google Scholar 

  2. Perou CM, Sorlie T, Eisen MB et al (2000) Molecular portraits of human breast tumours. Nature 406:747–752

    Article  CAS  PubMed  Google Scholar 

  3. Nielsen TO, Hsu FD, Jensen K et al (2004) Immunohistochemical and clinical characterization of the basal-like subtype of invasive breast carcinoma. Clin Cancer Res 10:5367–5374

    Article  CAS  PubMed  Google Scholar 

  4. Bauer KR, Brown M, Cress RD, Parise CA, Caggiano V (2007) Descriptive analysis of estrogen receptor (ER)-negative, progesterone receptor (PR)-negative, and HER2-negative invasive breast cancer, the so-called triple-negative phenotype: a population-based study from the California cancer registry. Cancer 109:1721–1728

    Article  PubMed  Google Scholar 

  5. Reis-Filho JS, Tutt AN (2008) Triple negative tumours: a critical review. Histopathology 52:108–118

    Article  CAS  PubMed  Google Scholar 

  6. Fan C, Oh DS, Wessels L et al (2006) Concordance among gene-expression-based predictors for breast cancer. N Engl J Med 355:560–569

    Article  CAS  PubMed  Google Scholar 

  7. Fulford LG, Reis-Filho JS, Ryder K et al (2007) Basal-like grade III invasive ductal carcinoma of the breast: patterns of metastasis and long-term survival. Breast Cancer Res 9:R4

    Article  PubMed  Google Scholar 

  8. Kryj M, Maciejewski B, Withers HR, Taylor JM (1997) Incidence and kinetics of distant metastases in patients with operable breast cancer. Neoplasma 44:3–11

    CAS  PubMed  Google Scholar 

  9. Yokota J (2000) Tumor progression and metastasis. Carcinogenesis 21:497–503

    Article  CAS  PubMed  Google Scholar 

  10. Chang HY, Nuyten DS, Sneddon JB et al (2005) Robustness, scalability, and integration of a wound-response gene expression signature in predicting breast cancer survival. Proc Natl Acad Sci 102:3738–3743

    Article  CAS  PubMed  Google Scholar 

  11. Dvorak HF (1986) Tumors: wounds that do not heal, similarities between tumor stroma generation and wound healing. N Engl J Med 315:1650–1659

    Article  CAS  PubMed  Google Scholar 

  12. Beck AH, Espinosa I, Gilks CB, van de Rijn M, West RB (2008) The fibromatosis signature defines a robust stromal response in breast carcinoma. Lab Invest 88:591–601

    Article  CAS  PubMed  Google Scholar 

  13. Finak G, Bertos N, Pepin F et al (2008) Stromal gene expression predicts clinical outcome in breast cancer. Nat Med 14:518–527

    Article  CAS  PubMed  Google Scholar 

  14. Mesker WE, Junggeburt JM, Szuhai K et al (2007) The carcinoma-stromal ratio of colon carcinoma is an independent factor for survival compared to lymph node status and tumor stage. Cell Oncol 29:387–398

    PubMed  Google Scholar 

  15. Mesker WE, Liefers G, Junggeburt JMC et al (2009) Presence of a high amount of stroma and downregulation of smad-4 predict a worse survival for stage I-II colon cancer patients. Cell Oncol 31:169–178

    CAS  PubMed  Google Scholar 

  16. McShane LM, Altman DG, Sauerbrei W, Taube SE, Gion M, Clark GM (2006) REporting recommendations for tumor MARKer prognostic studies (REMARK). Breast Cancer Res Treat 100:229–235

    Article  PubMed  Google Scholar 

  17. Putter H, Fiocco M, Geskus RB (2007) Tutorial in biostatistics: competing risks and multi-state models. Stat Med 26:2389–2430

    Article  CAS  PubMed  Google Scholar 

  18. Courrech Staal EF, Wouters MW, van Sandick JW, et al (2010) The stromal part of adenocarcinomas of the oesophagus: does it conceal targets for therapy? Eur J Cancer 46:720–728

    Article  PubMed  Google Scholar 

  19. Harris L, Fritsche H, Mennel R et al (2007) American society of clinical oncology 2007 update of recommendations for the use of tumor markers in breast cancer. J Clin Oncol 25:5287–5312

    Article  CAS  PubMed  Google Scholar 

  20. Thomas J, Hanby A, Pinder S et al (2008) Implications of inconsistent measurement of ER status in non-invasive breast cancer: a study of 1, 684 cases from the Sloane project. Breast J 14:33–38

    Article  PubMed  Google Scholar 

  21. Nunes CB, Rocha RM, Reis-Filho JS et al (2008) Comparative analysis of six different antibodies against Her2 including the novel rabbit monoclonal antibody (SP3) and chromogenic in situ hybridisation in breast carcinomas. J Clin Pathol 61:934–938

    Article  CAS  PubMed  Google Scholar 

  22. Annecke K, Schmitt M, Euler U et al (2008) uPA and PAI-1 in breast cancer: review of their clinical utility and current validation in the prospective NNBC-3 trial. Adv Clin Chem 45:31–45

    Article  CAS  PubMed  Google Scholar 

  23. van de Vijver MJ, He YD, van’t Veer LJ et al (2002) A gene-expression signature as a predictor of survival in breast cancer. N Engl J Med 347:1999–2009

    Article  PubMed  Google Scholar 

  24. Ein-Dor L, Kela I, Getz G, Givol D, Domany E (2005) Outcome signature genes in breast cancer: is there a unique set? Bioinformatics 21:171–178

    Article  CAS  PubMed  Google Scholar 

  25. Michiels S, Koscielny S, Hill C (2005) Prediction of cancer outcome with microarrays: a multiple random validation strategy. Lancet 365:488–492

    Article  CAS  PubMed  Google Scholar 

  26. Haibe-Kains B, Desmedt C, Sotiriou C, Bontempi G (2008) A comparative study of survival models for breast cancer prognostication based on microarray data: does a single gene beat them all? Bioinformatics 24:2200–2208

    Article  CAS  PubMed  Google Scholar 

  27. Sotiriou C, Piccart MJ (2007) Taking gene-expression profiling to the clinic: when will molecular signatures become relevant to patient care? Nat Rev Cancer 7:545–553

    Article  CAS  PubMed  Google Scholar 

  28. Haibe-Kains B, Desmedt C, Piette F et al (2008) Comparison of prognostic gene expression signatures for breast cancer. BMC Genomics 9:394

    Article  PubMed  Google Scholar 

  29. Thomassen M, Tan Q, Eiriksdottir F, Bak M, Cold S, Kruse TA (2007) Comparison of gene sets for expression profiling: prediction of metastasis from low-malignant breast cancer. Clin Cancer Res 13:5355–5360

    Article  CAS  PubMed  Google Scholar 

  30. Wirapati P, Sotiriou C, Kunkel S et al (2008) Meta-analysis of gene expression profiles in breast cancer: toward a unified understanding of breast cancer subtyping and prognosis signatures. Breast Cancer Res 10:R65

    Article  PubMed  Google Scholar 

  31. Buyse M, Loi S, Van’t Veer L et al (2006) Validation and clinical utility of a 70-gene prognostic signature for women with node-negative breast cancer. J Natl Cancer Inst 98:1183–1192

    Article  CAS  PubMed  Google Scholar 

  32. Polyak K, Weinberg RA (2009) Transitions between epithelial and mesenchymal states: acquisition of malignant and stem cell traits. Nat Rev Cancer 9:265–273

    Article  CAS  PubMed  Google Scholar 

  33. Egeblad M, Werb Z (2002) New functions for the matrix metalloproteinases in cancer progression. Nat Rev Cancer 2:161–174

    Article  CAS  PubMed  Google Scholar 

  34. Kalluri R, Zeisberg M (2006) Fibroblasts in cancer. Nat Rev Cancer 6:392–401

    Article  CAS  PubMed  Google Scholar 

  35. Olumi AF, Grossfeld GD, Hayward SW, Carroll PR, Tlsty TD, Cunha GR (1999) Carcinoma-associated fibroblasts direct tumor progression of initiated human prostatic epithelium. Cancer Res 59:5002–5011

    CAS  PubMed  Google Scholar 

  36. Orimo A, Gupta PB, Sgroi DC et al (2005) Stromal fibroblasts present in invasive human breast carcinomas promote tumor growth and angiogenesis through elevated SDF-1/CXCL12 secretion. Cell 121:335–348

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We would like to thank the Dutch Cancer Society (UL 2007-3968) for financial support. In addition, we thank Dr. E. Bastiaannet and Dr. J.M.C. Junggeburt for additional statistical help, Mr. J. Molenaar for his help with the database, and Mr. K. van de Ham for pictures of representative tumor fields.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wilma E. Mesker.

Additional information

An invited commentary to this article can be found at doi:10.1007/s10549-010-0930-z

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 497 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

de Kruijf, E.M., van Nes, J.G.H., van de Velde, C.J.H. et al. Tumor–stroma ratio in the primary tumor is a prognostic factor in early breast cancer patients, especially in triple-negative carcinoma patients. Breast Cancer Res Treat 125, 687–696 (2011). https://doi.org/10.1007/s10549-010-0855-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10549-010-0855-6

Keywords

Navigation