Skip to main content

Advertisement

Log in

Detection and clinical relevance of early disseminated breast cancer cells depend on their cytokeratin expression pattern

  • Clinical trial
  • Published:
Breast Cancer Research and Treatment Aims and scope Submit manuscript

Abstract

The factors determining the clinical relevance of disseminated tumor cells (DTC) in breast cancer patients are largely unknown. Here we compared the specificity and clinical performance of two antibodies frequently used for DTC detection. Reactivities of antibodies A45-B/B3 (A45) and AE1/AE3 (AE) for selected cytokeratins (CK) were assessed by 2-DE Western Blot analysis. Using these antibodies bone marrow aspirates from 391 breast cancer patients (M0, pT1-3, pN0-3) were screened for the presence of DTC. To obtain prognostic information, patients were followed up over a median of 83 months for time to relapse and 99 months for time to death. Among the analyzed CK, AE detected CK5, CK7, CK8, and CK19, whereas A45 recognized CK7 and CK18. In total, 24 of 391 patients (6.1%) were DTC-positive for A45, and 41 (10.5%) for AE. Although concordance between the two antibodies was 84.4%, overlap among positive cases was only 3.2%. DTC-positivity with AE and A45 was more frequent in patients of higher nodal status (P = 0.019 and P = 0.036, respectively). Nearly all patients with A45-positive DTC had hormone receptor-positive tumors (23/24), while detection of AE-positive DTC was more frequent among hormone receptor negative patients (P = 0.006). Survival analyses of all patients revealed shorter distant disease-free survival (P = 0.039) for patients with A45-positive DTC, whereas the prognostic relevance of AE-positive DTC was restricted to node-positive patients. The clinical utility of immunocytochemical (ICC) DTC detection depends on the anti-CK antibody used, which may reflect the complex CK composition of DTC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Pantel K, Cote RJ, Fodstad O (1999) Detection and clinical importance of micrometastatic disease. J Natl Cancer Inst 91:1113–1124

    Article  CAS  PubMed  Google Scholar 

  2. Gnant M, Mlineritsch B, Schippinger W et al (2009) Endocrine therapy plus zoledronic acid in premenopausal breast cancer. N Engl J Med 360:679–691

    Article  CAS  PubMed  Google Scholar 

  3. Scher HI, Pantel K (2009) Bone marrow aspiration for disseminated tumor cell detection: a must-have test or is the jury still out? J Clin Oncol 27:1531–1533

    Article  PubMed  Google Scholar 

  4. Pantel K, Brakenhoff RH, Brandt B (2008) Detection, clinical relevance and specific biological properties of disseminating tumour cells. Nat Rev Cancer 8:329–340

    Article  CAS  PubMed  Google Scholar 

  5. Brugger W, Bross KJ, Glatt M et al (1994) Mobilization of tumor cells and hematopoietic progenitor cells into peripheral blood of patients with solid tumors. Blood 83:636–640

    CAS  PubMed  Google Scholar 

  6. Bidard FC, Vincent-Salomon A, Gomme S et al (2008) Disseminated tumor cells of breast cancer patients: a strong prognostic factor for distant and local relapse. Clin Cancer Res 14:3306–3311

    Article  CAS  PubMed  Google Scholar 

  7. Zhang XH, Wang Q, Gerald W et al (2009) Latent bone metastasis in breast cancer tied to Src-dependent survival signals. Cancer Cell 16:67–78

    Article  CAS  PubMed  Google Scholar 

  8. Borgen E, Naume B, Nesland JM et al (1999) Standardization of the immunocytochemical detection of cancer cells in BM and blood: I. establishment of objective criteria for the evaluation of immunostained cells. Cytotherapy 1:377–388

    Article  CAS  PubMed  Google Scholar 

  9. Fehm T, Braun S, Muller V et al (2006) A concept for the standardized detection of disseminated tumor cells in bone marrow from patients with primary breast cancer and its clinical implementation. Cancer 107:885–892

    Article  PubMed  Google Scholar 

  10. Pantel K, Schlimok G, Angstwurm M et al (1994) Methodological analysis of immunocytochemical screening for disseminated epithelial tumor cells in bone marrow. J Hematother 3:165–173

    CAS  PubMed  Google Scholar 

  11. Fuchs E, Weber K (1994) Intermediate filaments: structure, dynamics, function, and disease. Annu Rev Biochem 63:345–382

    CAS  PubMed  Google Scholar 

  12. Borgen E, Pantel K, Schlimok G et al (2006) A European interlaboratory testing of three well-known procedures for immunocytochemical detection of epithelial cells in bone marrow. Results from analysis of normal bone marrow. Cytometry B Clin Cytom 70:400–409

    CAS  PubMed  Google Scholar 

  13. Braun S, Pantel K, Muller P et al (2000) Cytokeratin-positive cells in the bone marrow and survival of patients with stage I, II, or III breast cancer. N Engl J Med 342:525–533

    Article  CAS  PubMed  Google Scholar 

  14. Naume B, Borgen E, Kvalheim G et al (2001) Detection of isolated tumor cells in bone marrow in early-stage breast carcinoma patients: comparison with preoperative clinical parameters and primary tumor characteristics. Clin Cancer Res 7:4122–4129

    CAS  PubMed  Google Scholar 

  15. Wiedswang G, Borgen E, Karesen R et al (2003) Detection of isolated tumor cells in bone marrow is an independent prognostic factor in breast cancer. J Clin Oncol 21:3469–3478

    Article  CAS  PubMed  Google Scholar 

  16. Willipinski-Stapelfeldt B, Riethdorf S, Assmann V et al (2005) Changes in cytoskeletal protein composition indicative of an epithelial-mesenchymal transition in human micrometastatic and primary breast carcinoma cells. Clin Cancer Res 11:8006–8014

    Article  CAS  PubMed  Google Scholar 

  17. Woelfle U, Sauter G, Santjer S et al (2004) Down-regulated expression of cytokeratin 18 promotes progression of human breast cancer. Clin Cancer Res 10:2670–2674

    Article  CAS  PubMed  Google Scholar 

  18. Mani SA, Guo W, Liao MJ et al (2008) The epithelial-mesenchymal transition generates cells with properties of stem cells. Cell 133:704–715

    Article  CAS  PubMed  Google Scholar 

  19. Kasper M, Stosiek P, Typlt H et al (1987) Histological evaluation of three new monoclonal anti-cytokeratin antibodies. 1. Normal tissues. Eur J Cancer Clin Oncol 23:137–147

    Article  CAS  PubMed  Google Scholar 

  20. Waseem A, Karsten U, Leigh IM et al (2004) Conformational changes in the rod domain of human keratin 8 following heterotypic association with keratin 18 and its implication for filament stability. Biochemistry 43:1283–1295

    Article  CAS  PubMed  Google Scholar 

  21. Woodcock-Mitchell J, Eichner R, Nelson WG et al (1982) Immunolocalization of keratin polypeptides in human epidermis using monoclonal antibodies. J Cell Biol 95:580–588

    Article  CAS  PubMed  Google Scholar 

  22. Sun TT, Tseng SC, Huang AJ et al (1985) Monoclonal antibody studies of mammalian epithelial keratins: a review. Ann N Y Acad Sci 455:307–329

    Article  CAS  PubMed  Google Scholar 

  23. Bartkowiak K, Wieczorek M, Buck F et al (2009) Two-dimensional differential gel electrophoresis of a cell line derived from a breast cancer micrometastasis revealed a stem/progenitor cell protein profile. J Proteome Res 8:2004–2014

    Article  CAS  PubMed  Google Scholar 

  24. McShane LM, Altman DG, Sauerbrei W et al (2005) Reporting recommendations for tumor marker prognostic studies. J Clin Oncol 23:9067–9072

    Article  PubMed  Google Scholar 

  25. Abd El-Rehim DM, Pinder SE, Paish CE et al (2004) Expression of luminal and basal cytokeratins in human breast carcinoma. J Pathol 203:661–671

    Article  PubMed  Google Scholar 

  26. van de Rijn M, Perou CM, Tibshirani R et al (2002) Expression of cytokeratins 17 and 5 identifies a group of breast carcinomas with poor clinical outcome. Am J Pathol 161:1991–1996

    PubMed  Google Scholar 

  27. Naume B, Wiedswang G, Borgen E et al (2004) The prognostic value of isolated tumor cells in bone marrow in breast cancer patients: evaluation of morphological categories and the number of clinically significant cells. Clin Cancer Res 10:3091–3097

    Article  PubMed  Google Scholar 

  28. Braun S, Vogl FD, Naume B et al (2005) A pooled analysis of bone marrow micrometastasis in breast cancer. N Engl J Med 353:793–802

    Article  CAS  PubMed  Google Scholar 

  29. Schindlbeck C, Kampik T, Janni W et al (2005) Prognostic relevance of disseminated tumor cells in the bone marrow and biological factors of 265 primary breast carcinomas. Breast Cancer Res 7:R1174–R1185

    Article  PubMed  Google Scholar 

  30. Slade MJ, Singh A, Smith BM et al (2005) Persistence of bone marrow micrometastases in patients receiving adjuvant therapy for breast cancer: results at 4 years. Int J Cancer 114:94–100

    Article  CAS  PubMed  Google Scholar 

  31. van de Vijver MJ, He YD, van’t Veer LJ et al (2002) A gene-expression signature as a predictor of survival in breast cancer. N Engl J Med 347:1999–2009

    Article  PubMed  Google Scholar 

  32. Korsching E, Packeisen J, Agelopoulos K et al (2002) Cytogenetic alterations and cytokeratin expression patterns in breast cancer: integrating a new model of breast differentiation into cytogenetic pathways of breast carcinogenesis. Lab Invest 82:1525–1533

    CAS  PubMed  Google Scholar 

  33. Korsching E, Packeisen J, Helms MW et al (2004) Deciphering a subgroup of breast carcinomas with putative progression of grade during carcinogenesis revealed by comparative genomic hybridisation (CGH) and immunohistochemistry. Br J Cancer 90:1422–1428

    Article  CAS  PubMed  Google Scholar 

  34. Naume B, Zhao X, Synnestvedt M et al (2007) Presence of bone marrow micrometastasis is associated with different recurrence risk within molecular subtypes of breast cancer. Mol Oncol 1:160–171

    Article  PubMed  Google Scholar 

  35. Polyak K, Weinberg RA (2009) Transitions between epithelial and mesenchymal states: acquisition of malignant and stem cell traits. Nat Rev Cancer 9:265–273

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Sonja Santjer, Cornelia Coith, Antje Andreas, and Sandra Schwentesius for their excellent technical assistance. This study was funded by the DISMAL project by the European Commission (contract no. LSHC-CT-2005-018911), Norwegian Cancer Society and Margaret Solbergs Legacy.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Klaus Pantel.

Electronic supplementary material

Below is the link to the electronic supplementary material.

(DOC 6596 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Effenberger, K.E., Borgen, E., Eulenburg, C.z. et al. Detection and clinical relevance of early disseminated breast cancer cells depend on their cytokeratin expression pattern. Breast Cancer Res Treat 125, 729–738 (2011). https://doi.org/10.1007/s10549-010-0911-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10549-010-0911-2

Keywords

Navigation