Skip to main content

Advertisement

Log in

Common genetic variation in adiponectin, leptin, and leptin receptor and association with breast cancer subtypes

  • Epidemiology
  • Published:
Breast Cancer Research and Treatment Aims and scope Submit manuscript

Abstract

Adipocytokines are produced by visceral fat, and levels may be associated with breast cancer risk. We investigated whether single nucleotide polymorphisms (SNPs) in adipocytokine genes adiponectin (ADIPOQ), leptin (LEP), and the leptin receptor (LEPR) were associated with basal-like or luminal A breast cancer subtypes. 104 candidate and tag SNPs were genotyped in 1776 of 2022 controls and 1972 (200 basal-like, 679 luminal A) of 2311 cases from the Carolina Breast Cancer Study (CBCS), a population-based case–control study of whites and African Americans. Breast cancer molecular subtypes were determined by immunohistochemistry. Genotype odds ratios (ORs) and 95% confidence intervals (CIs) were estimated using unconditional logistic regression. Haplotype ORs and 95% CIs were estimated using Hapstat. Interactions with waist-hip ratio were evaluated using a multiplicative interaction term. Ancestry was estimated from 144 ancestry informative markers (AIMs), and included in models to control for population stratification. Candidate SNPs LEPR K109R (rs1137100) and LEPR Q223R (rs1137101) were positively associated with luminal A breast cancer, whereas ADIPOQ +45 T/G (rs2241766), ADIPOQ +276 G/T (rs1501299), and LEPR K656N (rs8129183) were not associated with either subtype. Few patterns were observed among tag SNPs, with the exception of 3 LEPR SNPs (rs17412175, rs9436746, and rs9436748) that were in moderate LD and inversely associated with basal-like breast cancer. However, no SNP associations were statistically significant after adjustment for multiple comparisons. Haplotypes in LEP and LEPR were associated with both basal-like and luminal A subtypes. There was no evidence of interaction with waist-hip ratio. Data suggest associations between LEPR candidate SNPs and luminal A breast cancer in the CBCS and LEPR intron 2 tag SNPs and basal-like breast cancer. Replication in additional studies where breast cancer subtypes have been defined is necessary to confirm these potential associations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Fulford LG, Easton DF, Reis-Filho JS, Sofronis A, Gillett CE, Lakhani SR, Hanby A (2006) Specific morphological features predictive for the basal phenotype in grade 3 invasive ductal carcinoma of breast. Histopathology 49(1):22–34

    Article  PubMed  CAS  Google Scholar 

  2. Livasy CA, Karaca G, Nanda R, Tretiakova MS, Olopade OI, Moore DT, Perou CM (2006) Phenotypic evaluation of the basal-like subtype of invasive breast carcinoma. Mod Pathol 19(2):264–271

    Article  PubMed  CAS  Google Scholar 

  3. Kim MJ, Ro JY, Ahn SH, Kim HH, Kim SB, Gong G (2006) Clinicopathologic significance of the basal-like subtype of breast cancer: a comparison with hormone receptor and her2/neu-overexpressing phenotypes. Hum Pathol 37(9):1217–1226

    Article  PubMed  CAS  Google Scholar 

  4. Rodriguez-Pinilla SM, Sarrio D, Honrado E, Hardisson D, Calero F, Benitez J, Palacios J (2006) Prognostic significance of basal-like phenotype and fascin expression in node-negative invasive breast carcinomas. Clin Cancer Res 12(5):1533–1539

    Article  PubMed  CAS  Google Scholar 

  5. Carey LA, Perou CM, Livasy CA, Dressler LG, Cowan D, Conway K, Karaca G, Troester MA, Tse CK, Edmiston S, Deming SL, Geradts J, Cheang MC, Nielsen TO, Moorman PG et al (2006) Race, breast cancer subtypes, and survival in the carolina breast cancer study. JAMA 295(21):2492–2502

    Article  PubMed  CAS  Google Scholar 

  6. Kurebayashi J, Moriya T, Ishida T, Hirakawa H, Kurosumi M, Akiyama F, Kinoshita T, Takei H, Takahashi K, Ikeda M, Nakashima K (2007) The prevalence of intrinsic subtypes and prognosis in breast cancer patients of different races. Breast 16(Suppl 2):S72–S77

    Article  PubMed  Google Scholar 

  7. Foulkes WD, Stefansson IM, Chappuis PO, Begin LR, Goffin JR, Wong N, Trudel M, Akslen LA (2003) Germline brca1 mutations and a basal epithelial phenotype in breast cancer. J Natl Cancer Inst 95(19):1482–1485

    PubMed  CAS  Google Scholar 

  8. Lakhani SR, Reis-Filho JS, Fulford L, Penault-Llorca F, van der Vijver M, Parry S, Bishop T, Benitez J, Rivas C, Bignon YJ, Chang-Claude J, Hamann U, Cornelisse CJ, Devilee P, Beckmann MW et al (2005) Prediction of brca1 status in patients with breast cancer using estrogen receptor and basal phenotype. Clin Cancer Res 11(14):5175–5180

    Article  PubMed  CAS  Google Scholar 

  9. Turner NC, Reis-Filho JS (2006) Basal-like breast cancer and the brca1 phenotype. Oncogene 25(43):5846–5853

    Article  PubMed  CAS  Google Scholar 

  10. Millikan RC, Newman B, Tse CK, Moorman PG, Conway K, Dressler LG, Smith LV, Labbok MH, Geradts J, Bensen JT, Jackson S, Nyante S, Livasy C, Carey L, Earp HS et al (2008) Epidemiology of basal-like breast cancer. Breast Cancer Res Treat 109(1):123–139

    Article  PubMed  Google Scholar 

  11. Schaffler A, Scholmerich J, Buechler C (2007) Mechanisms of disease: adipokines and breast cancer-endocrine and paracrine mechanisms that connect adiposity and breast cancer. Nat Clin Pract Endocrinol Metab 3(4):345–354

    Article  PubMed  Google Scholar 

  12. Rose DP, Komninou D, Stephenson GD (2004) Obesity, adipocytokines, and insulin resistance in breast cancer. Obes Rev 5(3):153–165

    Article  PubMed  CAS  Google Scholar 

  13. Fredriksson J, Carlsson E, Orho-Melander M, Groop L, Ridderstrale M (2006) A polymorphism in the adiponectin gene influences adiponectin expression levels in visceral fat in obese subjects. Int J Obes (Lond) 30(2):226–232

    Article  CAS  Google Scholar 

  14. Vona-Davis L, Howard-McNatt M, Rose DP (2007) Adiposity, type 2 diabetes and the metabolic syndrome in breast cancer. Obes Rev 8(5):395–408

    Article  PubMed  CAS  Google Scholar 

  15. Kelesidis I, Kelesidis T, Mantzoros CS (2006) Adiponectin and cancer: a systematic review. Br J Cancer 94(9):1221–1225

    Article  PubMed  CAS  Google Scholar 

  16. Mantzoros C, Petridou E, Dessypris N, Chavelas C, Dalamaga M, Alexe DM, Papadiamantis Y, Markopoulos C, Spanos E, Chrousos G, Trichopoulos D (2004) Adiponectin and breast cancer risk. J Clin Endocrinol Metab 89(3):1102–1107

    Article  PubMed  CAS  Google Scholar 

  17. Chen DC, Chung YF, Yeh YT, Chaung HC, Kuo FC, Fu OY, Chen HY, Hou MF, Yuan SS (2006) Serum adiponectin and leptin levels in Taiwanese breast cancer patients. Cancer Lett 237(1):109–114

    Article  PubMed  CAS  Google Scholar 

  18. Korner A, Pazaitou-Panayiotou K, Kelesidis T, Kelesidis I, Williams CJ, Kaprara A, Bullen J, Neuwirth A, Tseleni S, Mitsiades N, Kiess W, Mantzoros CS (2007) Total and high-molecular-weight adiponectin in breast cancer: in vitro and in vivo studies. J Clin Endocrinol Metab 92(3):1041–1048

    Article  PubMed  Google Scholar 

  19. Miyoshi Y, Funahashi T, Kihara S, Taguchi T, Tamaki Y, Matsuzawa Y, Noguchi S (2003) Association of serum adiponectin levels with breast cancer risk. Clin Cancer Res 9(15):5699–5704

    PubMed  CAS  Google Scholar 

  20. Kang JH, Yu BY, Youn DS (2007) Relationship of serum adiponectin and resistin levels with breast cancer risk. J Korean Med Sci 22(1):117–121

    Article  PubMed  CAS  Google Scholar 

  21. Han CZ, Du LL, Jing JX, Zhao XW, Tian FG, Shi J, Tian BG, Liu XY, Zhang LJ (2008) Associations among lipids, leptin, and leptin receptor gene gin223arg polymorphisms and breast cancer in china. Biol Trace Elem Res 126(1–3):38–48

    Article  PubMed  CAS  Google Scholar 

  22. Mantzoros CS, Bolhke K, Moschos S, Cramer DW (1999) Leptin in relation to carcinoma in situ of the breast: a study of pre-menopausal cases and controls. Int J Cancer 80(4):523–526

    Article  PubMed  CAS  Google Scholar 

  23. Petridou E, Papadiamantis Y, Markopoulos C, Spanos E, Dessypris N, Trichopoulos D (2000) Leptin and insulin growth factor i in relation to breast cancer (greece). Cancer Causes Control 11(5):383–388

    Article  PubMed  CAS  Google Scholar 

  24. Stattin P, Soderberg S, Biessy C, Lenner P, Hallmans G, Kaaks R, Olsson T (2004) Plasma leptin and breast cancer risk: a prospective study in northern Sweden. Breast Cancer Res Treat 86(3):191–196

    Article  PubMed  CAS  Google Scholar 

  25. Cleveland RJ, Gammon MD, Long CM, Gaudet MM, Eng SM, Teitelbaum SL, Neugut AI, Santella RM (2010) Common genetic variations in the lep and lepr genes, obesity and breast cancer incidence and survival. Breast Cancer Res Treat 120(3):745–752. doi:10.1007/s10549-009-0503-1

    Article  PubMed  CAS  Google Scholar 

  26. Kaklamani VG, Sadim M, Hsi A, Offit K, Oddoux C, Ostrer H, Ahsan H, Pasche B, Mantzoros C (2008) Variants of the adiponectin and adiponectin receptor 1 genes and breast cancer risk. Cancer Res 68(9):3178–3184

    Article  PubMed  CAS  Google Scholar 

  27. Snoussi K, Strosberg AD, Bouaouina N, Ben Ahmed S, Helal AN, Chouchane L (2006) Leptin and leptin receptor polymorphisms are associated with increased risk and poor prognosis of breast carcinoma. BMC Cancer 6:38

    Article  PubMed  Google Scholar 

  28. Woo HY, Park H, Ki CS, Park YL, Bae WG (2006) Relationships among serum leptin, leptin receptor gene polymorphisms, and breast cancer in Korea. Cancer Lett 237(1):137–142

    Article  PubMed  CAS  Google Scholar 

  29. Teras LR, Goodman M, Patel AV, Bouzyk M, Tang W, Diver WR, Feigelson HS (2009) No association between polymorphisms in lep, lepr, adipoq, adipor1, or adipor2 and postmenopausal breast cancer risk. Cancer Epidemiol Biomarkers Prev 18(9):2553–2557. doi:10.1158/1055-9965.EPI-09-0542

    Article  PubMed  CAS  Google Scholar 

  30. Okobia MN, Bunker CH, Garte SJ, Zmuda JM, Ezeome ER, Anyanwu SN, Uche EE, Kuller LH, Ferrell RE, Taioli E (2008) Leptin receptor gln223arg polymorphism and breast cancer risk in Nigerian women: a case control study. BMC Cancer 8:338

    Article  PubMed  Google Scholar 

  31. Yang XR, Sherman ME, Rimm DL, Lissowska J, Brinton LA, Peplonska B, Hewitt SM, Anderson WF, Szeszenia-Dabrowska N, Bardin-Mikolajczak A, Zatonski W, Cartun R, Mandich D, Rymkiewicz G, Ligaj M et al (2007) Differences in risk factors for breast cancer molecular subtypes in a population-based study. Cancer Epidemiol Biomarkers Prev 16(3):439–443

    Article  PubMed  CAS  Google Scholar 

  32. Kristensen VN, Borresen-Dale AL (2008) Snps associated with molecular subtypes of breast cancer: on the usefulness of stratified genome-wide association studies (gwas) in the identification of novel susceptibility loci. Mol Oncol 2(1):12–15

    Article  PubMed  Google Scholar 

  33. Nordgard SH, Johansen FE, Alnaes GI, Naume B, Borresen-Dale AL, Kristensen VN (2007) Genes harbouring susceptibility snps are differentially expressed in the breast cancer subtypes. Breast Cancer Res 9(6):113

    Article  PubMed  Google Scholar 

  34. Thorner AR, Hoadley KA, Parker JS, Winkel S, Millikan RC, Perou CM (2009) In vitro and in vivo analysis of b-myb in basal-like breast cancer. Oncogene 28(5):742–751

    Article  PubMed  CAS  Google Scholar 

  35. Newman B, Moorman PG, Millikan R, Qaqish BF, Geradts J, Aldrich TE, Liu ET (1995) The Carolina breast cancer study: integrating population-based epidemiology and molecular biology. Breast Cancer Res Treat 35(1):51–60

    Article  PubMed  CAS  Google Scholar 

  36. Millikan R, Eaton A, Worley K, Biscocho L, Hodgson E, Huang WY, Geradts J, Iacocca M, Cowan D, Conway K, Dressler L (2003) Her2 codon 655 polymorphism and risk of breast cancer in African Americans and whites. Breast Cancer Res Treat 79(3):355–364

    Article  PubMed  CAS  Google Scholar 

  37. Weinberg CR, Sandler DP (1991) Randomized recruitment in case-control studies. Am J Epidemiol 134(4):421–432

    PubMed  CAS  Google Scholar 

  38. Huang WY, Newman B, Millikan RC, Schell MJ, Hulka BS, Moorman PG (2000) Hormone-related factors and risk of breast cancer in relation to estrogen receptor and progesterone receptor status. Am J Epidemiol 151(7):703–714

    PubMed  CAS  Google Scholar 

  39. Nielsen TO, Hsu FD, Jensen K, Cheang M, Karaca G, Hu Z, Hernandez-Boussard T, Livasy C, Cowan D, Dressler L, Akslen LA, Ragaz J, Gown AM, Gilks CB, van de Rijn M et al (2004) Immunohistochemical and clinical characterization of the basal-like subtype of invasive breast carcinoma. Clin Cancer Res 10(16):5367–5374

    Article  PubMed  CAS  Google Scholar 

  40. Livasy CA, Perou CM, Karaca G, Cowan DW, Maia D, Jackson S, Tse CK, Nyante S, Millikan RC (2007) Identification of a basal-like subtype of breast ductal carcinoma in situ. Hum Pathol 38(2):197–204

    Article  PubMed  CAS  Google Scholar 

  41. de Bakker PI, Yelensky R, Pe’er I, Gabriel SB, Daly MJ, Altshuler D (2005) Efficiency and power in genetic association studies. Nat Genet 37(11):1217–1223

    Article  PubMed  Google Scholar 

  42. Carlson CS, Eberle MA, Rieder MJ, Yi Q, Kruglyak L, Nickerson DA (2004) Selecting a maximally informative set of single-nucleotide polymorphisms for association analyses using linkage disequilibrium. Am J Hum Genet 74(1):106–120

    Article  PubMed  CAS  Google Scholar 

  43. Frazer KA, Ballinger DG, Cox DR, Hinds DA, Stuve LL, Gibbs RA, Belmont JW, Boudreau A, Hardenbol P, Leal SM, Pasternak S, Wheeler DA, Willis TD, Yu F, Yang H et al (2007) A second generation human haplotype map of over 3.1 million snps. Nature 449(7164):851–861

    Article  PubMed  CAS  Google Scholar 

  44. Barnholtz-Sloan JS, Shetty PB, Guan X, Nyante SJ, Luo J, Brennan DJ, Millikan RC (2010) Fgfr2 and other loci identified in genome-wide association studies are associated with breast cancer in african-american and younger women. Carcinogenesis 31(8):1417–1423. doi:10.1093/carcin/bgq128

    Article  PubMed  CAS  Google Scholar 

  45. Tian C, Hinds DA, Shigeta R, Kittles R, Ballinger DG, Seldin MF (2006) A genomewide single-nucleotide-polymorphism panel with high ancestry information for African American admixture mapping. Am J Hum Genet 79(4):640–649

    Article  PubMed  CAS  Google Scholar 

  46. Barnholtz-Sloan JS, McEvoy B, Shriver MD, Rebbeck TR (2008) Ancestry estimation and correction for population stratification in molecular epidemiologic association studies. Cancer Epidemiol Biomarkers Prev 17(3):471–477

    Article  PubMed  CAS  Google Scholar 

  47. Wigginton JE, Cutler DJ, Abecasis GR (2005) A note on exact tests of Hardy–Weinberg equilibrium. Am J Hum Genet 76(5):887–893

    Article  PubMed  CAS  Google Scholar 

  48. Barnholtz-Sloan JS, Chakraborty R, Sellers TA, Schwartz AG (2005) Examining population stratification via individual ancestry estimates versus self-reported race. Cancer Epidemiol Biomarkers Prev 14(6):1545–1551

    Article  PubMed  Google Scholar 

  49. Hall IJ, Newman B, Millikan RC, Moorman PG (2000) Body size and breast cancer risk in black women and white women: the carolina breast cancer study. Am J Epidemiol 151(8):754–764

    PubMed  CAS  Google Scholar 

  50. Harvie M, Hooper L, Howell AH (2003) Central obesity and breast cancer risk: a systematic review. Obes Rev 4(3):157–173

    Article  PubMed  CAS  Google Scholar 

  51. Connolly BS, Barnett C, Vogt KN, Li T, Stone J, Boyd NF (2002) A meta-analysis of published literature on waist-to-hip ratio and risk of breast cancer. Nutr Cancer 44(2):127–138

    Article  PubMed  Google Scholar 

  52. Barrett JC, Fry B, Maller J, Daly MJ (2005) Haploview: analysis and visualization of ld and haplotype maps. Bioinformatics 21(2):263–265

    Article  PubMed  CAS  Google Scholar 

  53. Poole C (2001) Low P-values or narrow confidence intervals: which are more durable? Epidemiology 12(3):291–294

    Article  PubMed  CAS  Google Scholar 

  54. Lettre G, Lange C, Hirschhorn JN (2007) Genetic model testing and statistical power in population-based association studies of quantitative traits. Genet Epidemiol 31(4):358–362

    Article  PubMed  Google Scholar 

  55. Lin DY (2005) An efficient Monte Carlo approach to assessing statistical significance in genomic studies. Bioinformatics 21(6):781–787. doi:10.1093/bioinformatics/bti053

    Article  PubMed  CAS  Google Scholar 

  56. Lin DY, Zeng D, Millikan R (2005) Maximum likelihood estimation of haplotype effects and haplotype-environment interactions in association studies. Genet Epidemiol 29(4):299–312

    Article  PubMed  CAS  Google Scholar 

  57. Lin DY, Zeng D (2006) Likelihood-based inference on haplotype effects in genetic association studies. J Am Stat Assoc 101(473):89–118

    Article  CAS  Google Scholar 

  58. Hu YJ, Lin DY, Zeng D (2010) A general framework for studying genetic effects and gene–environment interactions with missing data. Biostatistics 11(4):583–598. doi:10.1093/biostatistics/kxq015

    Article  PubMed  CAS  Google Scholar 

  59. Quinton ND, Lee AJ, Ross RJ, Eastell R, Blakemore AI (2001) A single nucleotide polymorphism (snp) in the leptin receptor is associated with BMI, fat mass and leptin levels in postmenopausal Caucasian women. Hum Genet 108(3):233–236

    Article  PubMed  CAS  Google Scholar 

  60. van Rossum CT, Hoebee B, van Baak MA, Mars M, Saris WH, Seidell JC (2003) Genetic variation in the leptin receptor gene, leptin, and weight gain in young Dutch adults. Obes Res 11(3):377–386

    Article  PubMed  Google Scholar 

  61. Wauters M, Mertens I, Chagnon M, Rankinen T, Considine RV, Chagnon YC, Van Gaal LF, Bouchard C (2001) Polymorphisms in the leptin receptor gene, body composition and fat distribution in overweight and obese women. Int J Obes Relat Metab Disord 25(5):714–720

    Article  PubMed  CAS  Google Scholar 

  62. Kim SM, Kim SH, Lee JR, Jee BC, Ku SY, Suh CS, Choi YM, Kim JG, Moon SY (2008) Association of leptin receptor polymorphisms lys109arg and gln223arg with serum leptin profile and bone mineral density in Korean women. Am J Obstet Gynecol 198(4):e421–e428. doi:10.1016/j.ajog.2007.10.799

    Article  Google Scholar 

  63. Ogawa T, Hirose H, Yamamoto Y, Nishikai K, Miyashita K, Nakamura H, Saito I, Saruta T (2004) Relationships between serum soluble leptin receptor level and serum leptin and adiponectin levels, insulin resistance index, lipid profile, and leptin receptor gene polymorphisms in the Japanese population. Metabolism 53(7):879–885

    Article  PubMed  CAS  Google Scholar 

  64. Stratigopoulos G, Le Duc CA, Matsuoka N, Gutman R, Rausch R, Robertson SA, Myers MG Jr, Chung WK, Chua SC Jr, Leibel RL (2009) Functional consequences of the human leptin receptor (lepr) q223r transversion. Obesity (Silver Spring) 17(1):126–135. doi:10.1038/oby.2008.489

    Article  CAS  Google Scholar 

  65. Ragin CC, Dallal C, Okobia M, Modugno F, Chen J, Garte S, Taioli E (2009) Leptin levels and leptin receptor polymorphism frequency in healthy populations. Infect Agent Cancer 4(Suppl 1):13. doi:10.1186/1750-9378-4-S1-S13

    Article  Google Scholar 

  66. Ben Ali S, Kallel A, Sediri Y, Ftouhi B, Feki M, Slimene H, Jemaa R, Kaabachi N (2009) Lepr p.Q223r polymorphism influences plasma leptin levels and body mass index in Tunisian obese patients. Arch Med Res 40(3):186–190. doi:10.1016/j.arcmed.2009.02.008

    Article  PubMed  CAS  Google Scholar 

  67. Savitz DA (2003) Interpreting epidemiologic evidence. Oxford University Press, New York

    Book  Google Scholar 

Download references

Acknowledgments

The authors wish to thank Patricia Basta, Michael Andre, and Amanda Beaty for their work in preparing the DNA samples and conducting the genotyping. The authors also thank Jessica Tse for advice and statistical support. Sarah J. Nyante was supported by the Lineberger Cancer Center Cancer Control Education Program Predoctoral Fellowship (R25 CA57726). The Carolina Breast Cancer Study was funded by the Specialized Program of Research Excellence (SPORE) in Breast Cancer at UNC (NIH/NCI P50-CA58223) and the Lineberger Comprehensive Cancer Center Core Grant (P30-CA16086).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sarah J. Nyante.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 482 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nyante, S.J., Gammon, M.D., Kaufman, J.S. et al. Common genetic variation in adiponectin, leptin, and leptin receptor and association with breast cancer subtypes. Breast Cancer Res Treat 129, 593–606 (2011). https://doi.org/10.1007/s10549-011-1517-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10549-011-1517-z

Keywords

Navigation