Skip to main content

Advertisement

Log in

Biologic markers determine both the risk and the timing of recurrence in breast cancer

  • Brief Report
  • Published:
Breast Cancer Research and Treatment Aims and scope Submit manuscript

Abstract

Breast cancer has a long natural history. Established and emerging biologic markers address overall risk but not necessarily timing of recurrence. 346 adjuvant naïve breast cancer cases from Guy’s Hospital with 23 years minimum follow-up and archival blocks were recut and reassessed for hormone-receptors (HR), HER2-receptor and grade. Disease-specific survival (DSS) was analyzed by recursive partitioning. To validate insights from this analysis, gene-signatures (proliferative and HR-negative) were evaluated for their ability to predict early versus late metastatic risk in 683 node-negative, adjuvant naïve breast cancers annotated with expression microarray data. Risk partitioning showed that adjuvant naïve node-negative outcome risk was primarily partitioned by tumor receptor status and grade but not tumor size. HR-positive and HER2-negative (HRpos) risk was partitioned by tumor grade; low grade cases have very low early risk but a 20% fall-off in DSS 10 or more years after diagnosis. Higher grade HRpos cases have risk over >20 years. Triple-negative (Tneg) and HER2-positive (HER2pos) cases DSS events occurred primarily within the first 5 years. Among node-positive cases, only low grade conferred late risk, suggesting that proliferative gene signatures that identify proliferation would be important for predicting early but not late recurrence. Using pooled data from four publicly available data sets for node-negative tumors annotated with gene expression and outcome data, we evaluated four prognostic gene signatures: two proliferation-based and two immune function-based. Tumor proliferative capacity predicted early but not late metastatic risk for HRpos cases. The immune function or HRneg specific signatures predicted only early metastatic risk in Tneg and HER2pos cases. Breast cancer prognostic signatures need to inform both risk and timing of metastatic events and may best be applied within subsets. Current signatures predict for outcome risk within 5 years of diagnosis. Predictors of late risk for HR positive disease are needed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Sorlie T, Perou CM, Tibshirani R et al (2001) Gene expression patterns of breast carcinomas distinguish tumor subclasses with clinical implications. Proc Natl Acad Sci USA 98(19):10869–10874 Sep 11

    Article  PubMed  CAS  Google Scholar 

  2. van‘t Veer LJ, Dai H, van de Vijver MJ et al (2002) Gene expression profiling predicts clinical outcome of breast cancer. Nature 415(6871):530–536 Jan 31

    Article  Google Scholar 

  3. Hu Z, Fan C, Oh DS et al (2006) The molecular portraits of breast tumors are conserved across microarray platforms. BMC Genomics 7:96

    Article  PubMed  Google Scholar 

  4. Ross JS, Hatzis C, Symmans WF, Pusztai L, Hortobagyi GN (2008) Commercialized multigene predictors of clinical outcome for breast cancer. Oncologist 13(5):477–493

    Article  PubMed  Google Scholar 

  5. Pusztai L (2009) Gene expression profiling of breast cancer. Breast Cancer Res 11(Suppl 3):S11

    Article  PubMed  Google Scholar 

  6. Tutt A, Wang A, Rowland C et al (2008) Risk estimation of distant metastasis in node-negative, estrogen receptor-positive breast cancer patients using an RT-PCR based prognostic expression signature. BMC Cancer 8:339

    Article  PubMed  Google Scholar 

  7. Wang Y, Klijn JG, Zhang Y et al (2005) Gene-expression profiles to predict distant metastasis of lymph-node-negative primary breast cancer. Lancet 365(9460):671–679 Feb 19–25

    PubMed  CAS  Google Scholar 

  8. Chang HY, Nuyten DS, Sneddon JB et al (2005) Robustness, scalability, and integration of a wound-response gene expression signature in predicting breast cancer survival. Proc Natl Acad Sci USA 102(10):3738–3743 Mar 8

    Article  PubMed  CAS  Google Scholar 

  9. Paik S, Shak S, Tang G et al (2004) A multigene assay to predict recurrence of tamoxifen-treated, node-negative breast cancer. N Engl J Med 351(27):2817–2826 Dec 30

    Article  PubMed  CAS  Google Scholar 

  10. Miller LD, Smeds J, George J et al (2005) An expression signature for p53 status in human breast cancer predicts mutation status, transcriptional effects, and patient survival. Proc Natl Acad Sci USA 102(38):13550–13555 Sep 20

    Article  PubMed  CAS  Google Scholar 

  11. Sotiriou C, Wirapati P, Loi S et al (2006) Gene expression profiling in breast cancer: understanding the molecular basis of histologic grade to improve prognosis. J Natl Cancer Inst 98(4):262–272 Feb 15

    Article  PubMed  CAS  Google Scholar 

  12. Wirapati P, Sotiriou C, Kunkel S et al (2008) Meta-analysis of gene expression profiles in breast cancer: toward a unified understanding of breast cancer subtyping and prognosis signatures. Breast Cancer Res 10(4):R65

    Article  PubMed  Google Scholar 

  13. Desmedt C, Haibe-Kains B, Wirapati P et al (2008) Biological processes associated with breast cancer clinical outcome depend on the molecular subtypes. Clin Cancer Res 14(16):5158–5165 Aug 15

    Article  PubMed  CAS  Google Scholar 

  14. Lobb EA, Butow PN, Kenny DT, Tattersall MH (1999) Communicating prognosis in early breast cancer: do women understand the language used? Med J Aust 171(6):290–294 Sep 20

    PubMed  CAS  Google Scholar 

  15. Lobb EA, Kenny DT, Butow PN, Tattersall MH (2001) Women’s preferences for discussion of prognosis in early breast cancer. Health Expect 4(1):48–57

    Article  PubMed  CAS  Google Scholar 

  16. Pichon MF, Broet P, Magdelenat H et al (1996) Prognostic value of steroid receptors after long-term follow-up of 2257 operable breast cancers. Br J Cancer 73(12):1545–1551

    Article  PubMed  CAS  Google Scholar 

  17. Harvey JM, Clark GM, Osborne CK, Allred DC (1999) Estrogen receptor status by immunohistochemistry is superior to the ligand-binding assay for predicting response to adjuvant endocrine therapy in breast cancer. J Clin Oncol 17(5):1474–1481

    PubMed  CAS  Google Scholar 

  18. Elston CW, Ellis IO (1991) Pathological prognostic factors in breast cancer. I. The value of histological grade in breast cancer: experience from a large study with long-term follow-up. Histopathology 19(5):403–410

    Article  PubMed  CAS  Google Scholar 

  19. Atkinson EJ, Therneau TM (2000) An introduction to recursive partitioning using the RPART routines

  20. Breiman L, Friedman J, Olshen R, Stone C (1984) Classification and regression trees. Wadsworth International Group, Belmont, CA

    Google Scholar 

  21. Minn AJ, Gupta GP, Siegel PM et al (2005) Genes that mediate breast cancer metastasis to lung. Nature 436(7050):518–524 Jul 28

    Article  PubMed  CAS  Google Scholar 

  22. Desmedt C, Piette F, Loi S et al (2007) Strong time dependence of the 76-gene prognostic signature for node-negative breast cancer patients in the TRANSBIG multicenter independent validation series. Clin Cancer Res 13(11):3207–3214 Jun 1

    Article  PubMed  CAS  Google Scholar 

  23. Perou CM, Sorlie T, Eisen MB et al (2000) Molecular portraits of human breast tumours. Nature 406(6797):747–752 Aug 17

    Article  PubMed  CAS  Google Scholar 

  24. Teschendorff AE, Caldas C (2008) A robust classifier of high predictive value to identify good prognosis patients in ER-negative breast cancer. Breast Cancer Res 10(4):R73

    Article  PubMed  Google Scholar 

  25. Yau C, Esserman L, Moore DH, Waldman F, Sninsky J, Benz CC (2010) A multigene predictor of metastatic outcome in early stage hormone receptor-negative and triple-negative breast cancer. Breast Cancer Res 12(5):R85 Oct 14

    Article  PubMed  Google Scholar 

  26. Reyal F, van Vliet MH, Armstrong NJ et al (2008) A comprehensive analysis of prognostic signatures reveals the high predictive capacity of the proliferation, immune response and RNA splicing modules in breast cancer. Breast Cancer Res 10(6):R93

    Article  PubMed  Google Scholar 

  27. Pintilie M (2007) Analysing and interpreting competing risk data. Stat Med 26(6):1360–1367 Mar 15

    Article  PubMed  Google Scholar 

  28. Cheang MC, Voduc D, Bajdik C et al (2008) Basal-like breast cancer defined by five biomarkers has superior prognostic value than triple-negative phenotype. Clin Cancer Res 14(5):1368–1376 Mar 1

    Article  PubMed  CAS  Google Scholar 

  29. Prat A, Parker JS, Karginova O et al (2010) Phenotypic and molecular characterization of the claudin-low intrinsic subtype of breast cancer. Breast Cancer Res 12(5):R68 Sep 2

    Article  PubMed  Google Scholar 

  30. Hobday TJ, Perez EA (2005) Molecularly targeted therapies for breast cancer. Cancer Control 12(2):73–81

    PubMed  Google Scholar 

  31. O’Shaughnessy J, Osborne C, Pippen JE et al (2011) Iniparib plus chemotherapy in metastatic triple-negative breast cancer. N Engl J Med 364(3):205–214 Jan 20

    Article  PubMed  Google Scholar 

  32. Saphner T, Tormey DC, Gray R (1996) Annual hazard rates of recurrence for breast cancer after primary therapy. J Clin Oncol 14(10):2738–2746

    PubMed  CAS  Google Scholar 

  33. EBCTCG (2005) Effects of chemotherapy and hormonal therapy for early breast cancer on recurrence and 15-year survival: an overview of the randomised trials. Lancet 365(9472):1687–1717 May 14–20

    Article  Google Scholar 

  34. Goss PE (2007) Letrozole in the extended adjuvant setting: MA.17. Breast Cancer Res Treat 105(Suppl 1):45–53

    Article  PubMed  CAS  Google Scholar 

  35. Goss PE, Ingle JN, Martino S et al (2003) A randomized trial of letrozole in postmenopausal women after five years of tamoxifen therapy for early-stage breast cancer. N Engl J Med 349(19):1793–1802 Nov 6

    Article  PubMed  CAS  Google Scholar 

  36. Wolff AC, Hammond ME, Schwartz JN et al (2007) American Society of Clinical Oncology/College of American Pathologists guideline recommendations for human epidermal growth factor receptor 2 testing in breast cancer. Arch Pathol Lab Med 131(1):18–43

    PubMed  CAS  Google Scholar 

  37. Buyse M, Loi S, van’t Veer L et al (2006) Validation and clinical utility of a 70-gene prognostic signature for women with node-negative breast cancer. J Natl Cancer Inst 98(17):1183–1192 Sep 6

    Article  PubMed  CAS  Google Scholar 

  38. Olivotto IA, Bajdik CD, Ravdin PM et al (2005) Population-based validation of the prognostic model ADJUVANT! for early breast cancer. J Clin Oncol 23(12):2716–2725 Apr 20

    Article  PubMed  Google Scholar 

  39. Mrozkowiak A, Olszewski WP, Piascik A, Olszewski WT (2004) HER2 status in breast cancer determined by IHC and FISH: comparison of the results. Pol J Pathol 55(4):165–171

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Early Detection Research Network (EDRN) initiative of the National Cancer Institute (5 UO1 CA111234); and from the Department of Health via the National Institute for Health Research (NIHR) Comprehensive Biomedical Research Centre award to Guy’s & St Thomas’ NHS Foundation Trust in partnership with King’s College London and King’s College Hospital NHS Foundation Trust.

Conflicts of interest

None of the authors declared any conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laura J. Esserman.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 24 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Esserman, L.J., Moore, D.H., Tsing, P.J. et al. Biologic markers determine both the risk and the timing of recurrence in breast cancer. Breast Cancer Res Treat 129, 607–616 (2011). https://doi.org/10.1007/s10549-011-1564-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10549-011-1564-5

Keywords

Navigation